Accurate Bearing Faults Classification based on Statistical-Time Features, Curvilinear Component Analysis and Neural Networks
View/Open
PONÈNCIA (1,564Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/19288
Document typeConference report
Defense date2012
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Bearing faults are the commonest form of
malfunction associated with electrical machines. So far, the
research has been carried out mainly in the detection of
localized faults, but the diagnosis of distributed faults is still
under development. In this context, this work presents a new
scheme for detecting and classifying both kinds of faults. This
work deals with a new diagnosis monitoring scheme, which is
based on statistical-time features calculated from vibration
signal, curvilinear component analysis for compression and
visualization of the features behavior and a hierarchical neural
network structure for classification. The obtained results from
different operation conditions validate the effectiveness and
feasibility of the proposed methodology.
CitationDelgado, M. [et al.]. Accurate Bearing Faults Classification based on Statistical-Time Features, Curvilinear Component Analysis and Neural Networks. A: Annual Conference of the IEEE Industrial Electronics Society. "IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society". 2012.
ISBN978-1-4673-2419-9
Files | Description | Size | Format | View |
---|---|---|---|---|
Delgado2.pdf | PONÈNCIA | 1,564Mb | Restricted access |