Show simple item record

dc.contributor.authorEl Murr, Anis
dc.contributor.authorHadj-Hassen, Faouzi
dc.contributor.authorRouabhi, Ahmed
dc.contributor.authorTijani, Michel
dc.date.accessioned2020-07-10T17:21:05Z
dc.date.available2020-07-10T17:21:05Z
dc.date.issued2013
dc.identifier.isbn978-84-941407-6-1
dc.identifier.urihttp://hdl.handle.net/2117/192864
dc.description.abstractWith the worldwide demand for electricity, renewable energy is attracting increasing attention. As this energy has an intermittent character, large-scale storage technologies are necessary. One of the most promising systems is the advanced adiabatic compressed air energy storage (AA-CAES) in underground lined rock caverns. The high cyclic thermal and mechanical loadings involved in the system can disturb the surrounding geological barrier and thus lead to the failure of the system. The implementation of a special lining capable of limiting the thermal losses, reducing the air leakage and ensuring the caverns stability, is therefore required. This paper presents the governing equations for fully coupled thermo-hydro-mechanical (THM) processes in saturated deformable media filled with dry air which characterize the conditions of the storing system. The assumptions used to simplify the equations are discussed and the neglected terms are underlined. These equations take into account the dependence of thermal conductivity on temperature, convection and heat compression. The air properties are derived using Helmholtz energy. A comprehensive comparison between the proposed model and a simple THM model based on constant parameters, ideal gas and conductive flux is made in order to emphasize the phenomena that could occur and their influences. Finally, thermo-hydro-mechanical simulations of the different lining materials are carried out to analyze the advantages and the drawbacks of each solution.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherthermo-hydro-mechanical coupling, underground storage, AA-CAES
dc.titleA fully coupled thermo-hydro-mechanical model for the analysis of the lining behavior of underground caverns in an AA-CAES system
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :
local.citation.startingPage1502
local.citation.endingPage1513


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder