Show simple item record

dc.contributor.authorHudobivnik, B.
dc.contributor.authorKorelc, J.
dc.description.abstractOur work will show that complex transient coupled problems can be formulated and solved effectively with AceGen and AceFEM using an automatic differentiation based formulation (ADB-formulation). From scalar pseudo-potential function consistent tangent matrix for strongly coupled problems can be derived, leading to quadratically convergent Newton-Raphson type procedure. Another problem considered is the implementation of finite element. Typically, all equations are written inside a single finite element and a single pseudo-potential is defined. Such implementation is efficient but rigid, therefore, a different implementation was considered. Within the second approach we wrote a separate finite element for each field, but in a way that quadratic convergent Newton-Raphson procedure is preserved. The paper presents examples where unified and field-by-field implementations are compared according to computational efficiency. The results show that with increasing ratio between the complexity of constitutive equations and discretization, generated code size and evaluation time of implementations become comparable.
dc.format.extent12 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherAutomatic Differentiation, Symbolic environment, Coupled Problems, Multiphysics Problems, Formulation Approach
dc.titleAutomatic differentiation based formulation of coupled problems
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder