Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.677 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing transactional databases for frequent itemset mining

Thumbnail
View/Open
Main article - Characterizing Transactional Databases for Frequent Itemset Mining (539,0Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/192797

Show full item record
Lezcano Ríos, Christian Gerardo
Arias Vicente, MartaMés informacióMés informacióMés informació
Document typeConference report
Defense date2019
PublisherCEUR-WS.org
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectGESTION Y ANALISIS DE DATOS COMPLEJOS (AEI-TIN2017-89244-R)
Abstract
This paper presents a study of the characteristics of transactional databases used in frequent itemset mining. Such characterizations have typically been used to benchmark and understand the data mining algorithms working on these databases. The aim of our study is to give a picture of how diverse and representative these benchmarking databases are, both in general but also in the context of particular empirical studies found in the literature. Our proposed list of metrics contains many of the existing metrics found in the literature, as well as new ones. Our study shows that our list of metrics is able to capture much of the datasets’ inner complexity and thus provides a good basis for the characterization of transactional datasets. Finally, we provide a set of representative datasets based on our characterization that may be used as a benchmark safely.
CitationLezcano, C.; Arias, M. Characterizing transactional databases for frequent itemset mining. A: SIAM International Conference on Data Mining. "Proceedings of the 1st Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning: co-located with SIAM International Conference on Data Mining (SDM 2019), Calgary, Alberta, Canada, May 4th, 2019". CEUR-WS.org, 2019, p. 44-53. 
URIhttp://hdl.handle.net/2117/192797
ISSN1613-0073
Publisher versionhttp://ceur-ws.org/Vol-2436/article_5.pdf
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.250]
  • Doctorat en Computació - Ponències/Comunicacions de congressos [54]
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge - Ponències/Comunicacions de congressos [119]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
article_5.pdfMain article - Characterizing Transactional Databases for Frequent Itemset Mining539,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina