Mostra el registre d'ítem simple

dc.contributor.authorSpahn, Johannes
dc.contributor.authorAndrä, Heiko
dc.contributor.authorKabel, Matthias
dc.contributor.authorMüller, Ralf
dc.date.accessioned2020-07-09T16:07:53Z
dc.date.available2020-07-09T16:07:53Z
dc.date.issued2013
dc.identifier.isbn978-84-941407-6-1
dc.identifier.urihttp://hdl.handle.net/2117/192765
dc.description.abstractModeling failure and progressive damage of composite materials presents a challenging task and is currently subject of many research activities in the field of computational mechanics. Conventional methods which assume constant material coefficients or global failure criteria, are in many cases not sufficient to predict the appropriate mechanical material response. Composite failure occurs as a result of complex mesostructural damage mechanisms and therefore it is preferable to capture these nonlinear material effects directly on a finer scale. Hence, recent multiscale modeling and simulation techniques were developed to consider the mesoscopic material behavior. In this contribution we propose an alternative multiscale approach similar to FE2. Nonlinear material effects caused by progressive damage behavior are captured on a finer length scale. The constituents are modeled explicitly and simple isotropic damage laws are used to describe the constitutive behavior. Hence, the resulting material response is based on genuine physical effects and only a few material parameters are required which can be measured directly in physical experiments. The fine scale problem (material level) is reformulated into an integral equation of Lippmann-Schwinger type and solved efficiently using the fast Fourier transformation (FFT). The calculation is carried out on a regular voxel grid which can be obtained from 3D images like tomographies without using any complicated mesh generation. Furthermore, the fine scale problem is integrated in a standard Finite Element framework which is used to solve the macroscopic BVP (component level).
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherMultiscale Analysis, Computational Homogenization, Continuum Damage Mechanics, FFT, Composite Materials, Localization
dc.titleA multiscale damage model for composite materials using a FFT-Based method
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :
local.citation.startingPage1201
local.citation.endingPage1212


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple