An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids
View/Open
1993_Simo_Oliver_Armero_ComputationalMechancis.pdf (4,452Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date1993-09
PublisherSpringer
Rights accessRestricted access - publisher's policy
Abstract
Ket qualitative features of solutions exhibiting strong discontinuities in rate-independent inelastic solids are identified and exploited in the design of a new class of finite element approximations. The analysis shows that the softening law must be re-interpreted in a distributional sense for the continuum solutions to make mathematical sense and provides a precise physical interpretation to the softening modulus. These results are verified by numerical simulations employing a regularized discontinuous finite element method which circumvent the strong mesh-dependence exhibited by conventional methods, without resorting to viscosity or introducing additional ad-hoc parameters. The analysis is extended to a new class of anisotropic rate-independent damage models for brittle materials.
Description
The final publication is available at Springer via http://dx.doi.org/10.1007/BF00372173.
CitationSimó, J.C.; Oliver, J.; Armero, F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. "Computational mechanics", Setembre 1993, vol. 12, núm. 5, p. 277-296.
ISSN0178-7675
Publisher versionhttps://link.springer.com/article/10.1007/BF00372173
Other identifiershttps://www.scipedia.com/public/Oliver_et_al_1993a
Files | Description | Size | Format | View |
---|---|---|---|---|
1993_Simo_Oliver_Armero_ComputationalMechancis.pdf![]() | 4,452Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder