Show simple item record

dc.contributor.authorErrera, M.-P.
dc.contributor.authorChemin, S.
dc.description.abstractThis paper analyses the numerical stability of a coupling procedure between a CFD code and a conduction solver in a partitioned approach. A finite volume method is used in the fluid partition and a finite element method in the solid partition. Since our goal is to get a global fluid-solid solution, the analysis of the transient in the solid is not of particular interest. Consequently, the numerical method is based on the coupling of a steady state in the solid with a time-dependent solution in the fluid. At the shared interface, Dirichlet (on the fluid side) and Robin (on the solid side) conditions are applied. An interface stability study is performed according to the normal-mode analysis of the theory of Godunov-Ryabenkii. The existence of an optimal coupling parameter is highlighted.
dc.format.extent9 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherCoupled Problems, Multiphysics, Heat Transfer, Stability, Convergence
dc.titleNumerical coupling procedure in steady conjugate heat transfer problems
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder