Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.758 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating the underlying gender bias in contextualized word embeddings

Thumbnail
View/Open
W19-3805.pdf (300,9Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/192658

Show full item record
Basta, Christine Raouf SaadMés informació
Ruiz Costa-Jussà, MartaMés informacióMés informació
Casas Manzanares, Noé
Document typeConference report
Defense date2019
PublisherAssociation for Computational Linguistics
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectTECNOLOGIAS DE APRENDIZAJE PROFUNDO APLICADAS AL PROCESADO DE VOZ Y AUDIO (MINECO-TEC2015-69266-P)
AUTONOMOUS LIFELONG LEARNING INTELLIGENT SYSTEMS (AEI-PCIN-2017-079)
Abstract
Gender bias is highly impacting natural language processing applications. Word embeddings have clearly been proven both to keep and amplify gender biases that are present in current data sources. Recently, contextualized word embeddings have enhanced previous word embedding techniques by computing word vector representations dependent on the sentence they appear in. In this paper, we study the impact of this conceptual change in the word embedding computation in relation with gender bias. Our analysis includes different measures previously applied in the literature to standard word embeddings. Our findings suggest that contextualized word embeddings are less biased than standard ones even when the latter are debiased.
CitationBasta, C.; Costa-jussà, M. R.; Casas, N. Evaluating the underlying gender bias in contextualized word embeddings. A: ACL Workshop on Gender Bias in Natural Language Processing. "The 2019 Conferenceof the North American Chapter of the Association for Computational Linguistics:Human Language Technologies: NAACL HLT 2019: Proceedings of the Conference: June 2-June 7, 2019". Stroudsburg, PA: Association for Computational Linguistics, 2019, p. 33-39. 
URIhttp://hdl.handle.net/2117/192658
ISBN978-1-950737-13-0
Publisher versionhttps://www.aclweb.org/anthology/W19-3805/
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.231]
  • Doctorat en Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [188]
  • VEU - Grup de Tractament de la Parla - Ponències/Comunicacions de congressos [436]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
W19-3805.pdf300,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina