Show simple item record

dc.contributor.authorNicola, Tondini
dc.contributor.authorFranssen, Jean-Marc
dc.description.abstractThe paper presents the assumptions and the issues that arise when developing an integrated modelling methodology between a Computational Fluid Dynamics (CFD) software applied to compartment fires and a Finite Element (FE) software applied to structural systems subjected to fire. In particular, a weak coupling approach used to simulate a fire exposed structure by modelling the fire development in the compartment, the heat penetration in the structure and the mechanical response is described. The advantages and the disadvantages of such a technique are highlighted compared to a full coupling that conversely takes into account all mutual interactions. The favourable aspect of computing the thermal response of the structure in the FE model in order to avoid modelling the structure in the CFD model is underlined, namely a sensitive reduction of computational demand. Finally, the study is enriched by an application of this methodology that concerns the simulation of a pool fire in an open compartment the results of which are compared with those obtained by employing the simplified Hasemi model included in the Eurocodes.
dc.format.extent11 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherCFD-FE interface, Weak coupling, Compartment fires
dc.titleImplementation of a weak coupling approach between a CFD and an FE software for fires in compartment
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder