Show simple item record

dc.contributor.authorMaliki, M.
dc.contributor.authorLaredj, N.
dc.contributor.authorNaji, H.
dc.contributor.authorBendani, K.
dc.contributor.authorMissoum, H.
dc.contributor.authorMenad, K.
dc.description.abstractThis paper reports on numerical modeling of heat, air, and moisture transfer through multilayered walls. Building materials are often subjected to temporal climatic variations, which can induce a transfer of heat and moisture through the walls of the building and the foundation soil. These materials are generally considered as porous media. The coupled heat, air and moisture transfer in building materials is of paramount importance in the construction area. In this way, a mathematical model has been elaborated and validated using a benchmark example. Here, we aim to determine the energy losses. The capillary pressure is considered as potential moisture which represents both the transport of vapor and liquid phases of the water. Basing on basic functions of partial differential equations, one can convert certain measurable properties of porous media as coefficients depending on the temperature and the capillary pressure. The results obtained compare favorably with other available in the literature.
dc.format.extent10 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherCoupled transfer, heat, air, moisture, multi-layer wall, porous media, simulation
dc.titleOn numerical modeling of couple heat, air and moisture transfer through multilayered walls
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED V
local.citation.publicationNameCOUPLED V : proceedings of the V International Conference on Computational Methods for Coupled Problems in Science and Engineering :

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder