Mostra el registre d'ítem simple

dc.contributor.authorBarbat Vlad, Gabriel
dc.contributor.authorCervera Ruiz, Miguel
dc.contributor.authorChiumenti, Michele
dc.contributor.authorEspinoza Durán, Eduardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-07-02T10:03:17Z
dc.date.available2022-04-09T00:28:45Z
dc.date.issued2020-06
dc.identifier.citationBarbat, G. B. [et al.]. Structural size effect: experimental, theoretical and accurate computational assessment. "Engineering structures", Juny 2020, vol. 213, p. 110555:1-110555:27.
dc.identifier.issn1873-7323
dc.identifier.urihttp://hdl.handle.net/2117/192259
dc.description.abstractIn this paper, experimental evidence, theoretical predictions and the finite element modelling of the structural size effect in cracking problems of quasi-brittle materials are discussed and assessed against each other. The fracture process is modelled through the crack band approach, using an isotropic damage constitutive law. The correct dissipation of the fracture energy, essential for modelling the phenomenon with precision, is introduced. An enhanced accuracy mixed finite element formulation is used to ensure mesh bias independent results. Several experimental campaigns where size effect is investigated are numerically reproduced in 2D and in 3D to assess the feasibility and the performance of the method. For this, mode I and mixed mode I and II fracture situations are considered in notched and unnotched beams. The correlation of the experimental results with the numerical simulations shows the capacity of the mixed FE formulation to reproduce crack paths, force-displacement curves and collapse mechanisms with precision for a wide range of structural sizes. The enhanced accuracy FE formulation eliminates the spurious mesh dependency that is characteristic of standard FE simulations. In addition, the model is able to follow Bazant’s size effect law with precision. Results confirm that the energy release rate in the progressing fracture is the fundamental cause of size effect in quasi-brittle materials. This is additionally verified in a study of the relative influence of statistical and energetic size effect. Computations show that the essential requirements to suitably simulate the phenomenon are (1) a fracture model ensuring the correct energy dissipation at the crack and (2) a method guaranteeing mesh objective results.
dc.description.sponsorshipFinancial support from the Spanish Ministry of Economy and Business via the ADaMANT (Computational Framework for Additive Manufacturing of Titanium Alloy) project (Proyectos de I + D (Excelencia) DPI2017-85998-P) is gratefully acknowledged. The support provided by the Spanish Ministry of Education to Mr. Gabriel Barbat via the FPU program is also acknowledged.
dc.language.isoeng
dc.publisherElsevier
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Materials i estructures de formigó
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshBrittleness--Mathematical models
dc.subject.otherCracking
dc.subject.otherSize effect
dc.subject.otherDamage
dc.subject.otherFracture energy
dc.subject.otherStrain localization
dc.subject.otherMixed finite elements
dc.titleStructural size effect: experimental, theoretical and accurate computational assessment
dc.typeArticle
dc.subject.lemacFragilitat -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1016/j.engstruct.2020.110555
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0141029619350801
dc.rights.accessOpen Access
local.identifier.drac28781090
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85998-P/ES/MARCO COMPUTACIONAL PARA LA FABRICACION ADITIVA DE COMPONENTES DE ALEACIONES DE TITANIO/
local.citation.authorBarbat, G. B.; Cervera, M.; Chiumenti, M.; Espinoza, E.
local.citation.publicationNameEngineering structures
local.citation.volume213
local.citation.startingPage110555:1
local.citation.endingPage110555:27


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple