Show simple item record

dc.contributor.authorCatalà Sabaté, Martí
dc.contributor.authorBechini, Jordi
dc.contributor.authorTenesa, Montserrat
dc.contributor.authorPérez, Ricardo
dc.contributor.authorMoya, Mariano
dc.contributor.authorVilaplana, Cristina
dc.contributor.authorValls Ribas, Joaquim
dc.contributor.authorAlonso Muñoz, Sergio
dc.contributor.authorLópez Codina, Daniel
dc.contributor.authorCardona Iglesias, Pere Joan
dc.contributor.authorPrats Soler, Clara
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.identifier.citationCatalà, M. [et al.]. Modelling the dynamics of tuberculosis lesions in a virtual lung: role of the bronchial tree in endogenous reinfection. "PLoS Computational Biology", 20 Maig 2020, vol. 16, núm. 5.
dc.description.abstractTuberculosis (TB) is an infectious disease that still causes more than 1.5 million deaths annually. The World Health Organization estimates that around 30% of the world’s population is latently infected. However, the mechanisms responsible for 10% of this reserve (i.e., of the latently infected population) developing an active disease are not fully understood, yet. The dynamic hypothesis suggests that endogenous reinfection has an important role in maintaining latent infection. In order to examine this hypothesis for falsifiability, an agent-based model of growth, merging, and proliferation of TB lesions was implemented in a computational bronchial tree, built with an iterative algorithm for the generation of bronchial bifurcations and tubes applied inside a virtual 3D pulmonary surface. The computational model was fed and parameterized with computed tomography (CT) experimental data from 5 latently infected minipigs. First, we used CT images to reconstruct the virtual pulmonary surfaces where bronchial trees are built. Then, CT data about TB lesion’ size and location to each minipig were used in the parameterization process. The model’s outcome provides spatial and size distributions of TB lesions that successfully reproduced experimental data, thus reinforcing the role of the bronchial tree as the spatial structure triggering endogenous reinfection. A sensitivity analysis of the model shows that the final number of lesions is strongly related with the endogenous reinfection frequency and maximum growth rate of the lesions, while their mean diameter mainly depends on the spatial spreading of new lesions and the maximum radius. Finally, the model was used as an in silico experimental platform to explore the transition from latent infection to active disease, identifying two main triggering factors: a high inflammatory response and the combination of a moderate inflammatory response with a small breathing amplitude.
dc.rightsAttribution 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Modelització matemàtica
dc.subject.lcshMathematical models
dc.titleModelling the dynamics of tuberculosis lesions in a virtual lung: role of the bronchial tree in endogenous reinfection
dc.subject.lemacModels matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorCatalà, M.; Bechini, J.; Tenesa, M.; Pérez, R.; Moya, M.; Vilaplana, C.; Valls, J.; Alonso, S.; Lopez, D.; Cardona, P.J.; Prats, C.
local.citation.publicationNamePLoS Computational Biology

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain