Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

8.911 Lectures/texts in conference proceedings
You are here:
View Item 
  •   DSpace Home
  • Congressos
  • International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED)
  • VI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED 2015) San Servolo, Venice, Italy, 18-20 May, 2015
  • View Item
  •   DSpace Home
  • Congressos
  • International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED)
  • VI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED 2015) San Servolo, Venice, Italy, 18-20 May, 2015
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Higher-order fem for nonlinear hydroelastic analysis of a floating elastic strip in shallow-water conditions

Thumbnail
View/Open
Coupled-2015_101-Higher-order FEM for nonlinear.pdf (524,1Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/191991

Show full item record
Karperaki, Angeliki E.
Belibassakis, Kostas A.
Papathanasiou, Theodosios K.
Markiloefas, Stilianos I.
Document typeConference report
Defense date2015
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The hydroelastic response of a thin, nonlinear, elastic strip floating in shalow-water environment is studied by means of a special higher order finite element scheme. Considering non-negligible stress variation in lateral direction, the nonlinear beam model, developed by Gao, is used for the simulation of large flexural displacement. Full hydroelastic coupling between the floating strip and incident waves is assumed. The derived set of equations is intended to serve as a simplified model for tsunami impact on Very Large Floating Structures (VLFS) or ice floes. The proposed finite element method incorporates Hermite polynomials of fifth degree for the approximation of the beam deflection/upper surface elevation in the hydroelastic coupling region and 5-node Lagrange finite elements for the simulation of the velocity potential in the water region. The resulting second order ordinary differential equation system is converted into a first order one and integrated with respect to time with the Crank-Nicolson method. Two distinct cases of long wave forcing, namely an elevation pulse and an N-wave pulse, are considered. Comparisons against the respective results of the standard, linear Euler-Bernoulli floating beam model are performed and the effect of large displacement in the beam response is studied.
URIhttp://hdl.handle.net/2117/191991
ISBN978-84-943928-3-2
Collections
  • International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED) - VI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED 2015) San Servolo, Venice, Italy, 18-20 May, 2015 [121]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Coupled-2015_10 ... rder FEM for nonlinear.pdf524,1KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina