dc.contributor.author | Mahajan, Ankush |
dc.contributor.author | Christodoulopoulos, Konstantinos |
dc.contributor.author | Martinez, Ricardo |
dc.contributor.author | Spadaro, Salvatore |
dc.contributor.author | Muñoz, Raul |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2020-06-29T16:02:33Z |
dc.date.issued | 2020 |
dc.identifier.citation | Mahajan, A. [et al.]. Improving QoT estimation accuracy with DGE monitoring using machine learning. A: International Conference on Optical Network Design and Modeling. "2020 International Conference on Optical Network Design and Modeling (ONDM) took place 18-21 May 2020 in Castelldefels, Spain". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 1-6. |
dc.identifier.isbn | 978-3-903176-22-5 |
dc.identifier.uri | http://hdl.handle.net/2117/191922 |
dc.description.abstract | In optical transport networks, Dynamic Gain Equalizers (DGE) are typically used at each link. A DGE
selectively attenuates the channels to compensate the cumulative Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the multi-span link, resulting in almost flat output power at the end of the link. We leverage monitored per link DGE attenuation profiles and coherent receivers Signal to Noise Ratio (SNR) information, and propose a machine learning (ML) based scheme to estimate the EDFA gain ripple penalties for new connections. Using that in realistic simulation scenarios we observed a design margin reduction from ~1dB to ~0.3dBs. |
dc.description.sponsorship | This work is a part of Future Optical Networks for Innovation, Research andExperimentation, ONFIRE project supported by European Union’s fundedHorizon 2020 research and innovation programme under the MarieSkłodowska-Curie grant agreement No. 765275. |
dc.format.extent | 6 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Machine learning |
dc.subject.other | Optical network |
dc.subject.other | QoT estimation |
dc.subject.other | Monitoring |
dc.subject.other | Machine learning |
dc.subject.other | Margins |
dc.title | Improving QoT estimation accuracy with DGE monitoring using machine learning |
dc.type | Conference report |
dc.subject.lemac | Aprenentatge automàtic |
dc.contributor.group | Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques |
dc.description.peerreviewed | Peer Reviewed |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 28601617 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/765275/EU/Future Optical Networks for Innovation, Research and Experimentation/ONFIRE |
dc.date.lift | 10000-01-01 |
local.citation.author | Mahajan, A.; Christodoulopoulos, K.; Martinez, R.; Spadaro, S.; Muñoz, R. |
local.citation.contributor | International Conference on Optical Network Design and Modeling |
local.citation.publicationName | 2020 International Conference on Optical Network Design and Modeling (ONDM) took place 18-21 May 2020 in Castelldefels, Spain |
local.citation.startingPage | 1 |
local.citation.endingPage | 6 |