Show simple item record

dc.contributor.authorSerpa, Matheus S.
dc.contributor.authorCruz, Eduardo HM
dc.contributor.authorDiener, Matthias
dc.contributor.authorKrause, Arthur M.
dc.contributor.authorNavaux, Philippe
dc.contributor.authorPanetta, Jairo
dc.contributor.authorFarrés Coma, Albert
dc.contributor.authorRosas, Claudia
dc.contributor.authorHanzich, Mauricio
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2020-06-26T09:02:08Z
dc.date.available2020-06-26T09:02:08Z
dc.date.issued2019-01-17
dc.identifier.citationSerpa, M. [et al.]. Optimization strategies for geophysics models on manycore systems. "International journal of high performance computing applications", 17 Gener 2019, vol. 33, núm. 3, p. 473-486.
dc.identifier.issn1094-3420
dc.identifier.urihttp://hdl.handle.net/2117/191643
dc.description.abstractMany software mechanisms for geophysics exploration in oil and gas industries are based on wave propagation simulation. To perform such simulations, state-of-the-art high-performance computing architectures are employed, generating results faster with more accuracy at each generation. The software must evolve to support the new features of each design to keep performance scaling. Furthermore, it is important to understand the impact of each change applied to the software to improve the performance as most as possible. In this article, we propose several optimization strategies for a wave propagation model for six architectures: Intel Broadwell, Intel Haswell, Intel Knights Landing, Intel Knights Corner, NVIDIA Pascal, and NVIDIA Kepler. We focus on improving the cache memory usage, vectorization, load balancing, portability, and locality in the memory hierarchy. We analyze the hardware impact of the optimizations, providing insights of how each strategy can improve the performance. The results show that NVIDIA Pascal outperforms the other considered architectures by up to 8.5×.
dc.description.sponsorshipOur research received funding from the EU H2020 Programme and from MCTI/RNP-Brazil under the HPC4E project, grant agreement 689772, as well as from CNPq and Capes.
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshGeophysics
dc.subject.lcshMemory management (Computer science)
dc.subject.otherManycore systems
dc.subject.otherVectorization
dc.subject.otherMemory hierarchy
dc.subject.otherHPC
dc.titleOptimization strategies for geophysics models on manycore systems
dc.typeArticle
dc.subject.lemacGeofísica
dc.subject.lemacGestió de memòria (Informàtica)
dc.identifier.doi10.1177/1094342018824150
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://journals.sagepub.com/doi/10.1177/1094342018824150
dc.rights.accessOpen Access
local.identifier.drac28458631
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/689772/EU/HPC for Energy/HPC4E
local.citation.authorSerpa, M.; Cruz, E.; Diener, M.; Krause, A.; Navaux, P.; Panetta, J.; Farrés, A.; Rosas, C.; Hanzich, M.
local.citation.publicationNameInternational journal of high performance computing applications
local.citation.volume33
local.citation.number3
local.citation.startingPage473
local.citation.endingPage486


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record