Show simple item record

dc.contributor.authorQuiñones, Eduardo
dc.contributor.authorRoyuela Alcázar, Sara
dc.contributor.authorScordino, Claudio
dc.contributor.authorGai, Paolo
dc.contributor.authorPinho, Luis Miguel
dc.contributor.authorNogueira, Luis
dc.contributor.authorRollo, Jan
dc.contributor.authorCuccinottta, Tommaso
dc.contributor.authorBiondi, Alessandro
dc.contributor.authorHammam, Arne
dc.contributor.authorZiegenbein, Dirk
dc.contributor.authorSaoud, Hadi
dc.contributor.authorForsberg, Björn
dc.contributor.authorBenini, Luca
dc.contributor.authorMando, Gianluca
dc.contributor.authorRucher, Luigi
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2020-06-25T16:45:38Z
dc.date.available2020-06-25T16:45:38Z
dc.date.issued2020
dc.identifier.citationQuiñones, E. [et al.]. The AMPERE Project: A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimization. A: Object-Oriented Real-Time Distributed Computing, International Symposium on. "2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC): Nashville, TN, USA, 2020: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 201-206.
dc.identifier.issn2375-5261
dc.identifier.urihttp://hdl.handle.net/2117/191574
dc.description.abstractThe high-performance requirements needed to implement the most advanced functionalities of current and future Cyber-Physical Systems (CPSs) are challenging the development processes of CPSs. On one side, CPSs rely on model-driven engineering (MDE) to satisfy the non-functional constraints and to ensure a smooth and safe integration of new features. On the other side, the use of complex parallel and heterogeneous embedded processor architectures becomes mandatory to cope with the performance requirements. In this regard, parallel programming models, such as OpenMP or CUDA, are a fundamental brick to fully exploit the performance capabilities of these architectures. However, parallel programming models are not compatible with current MDE approaches, creating a gap between the MDE used to develop CPSs and the parallel programming models supported by novel and future embedded platforms.The AMPERE project will bridge this gap by implementing a novel software architecture for the development of advanced CPSs. To do so, the proposed software architecture will be capable of capturing the definition of the components and communications described in the MDE framework, together with the non-functional properties, and transform it into key parallel constructs present in current parallel models, which may require extensions. These features will allow for making an efficient use of underlying parallel and heterogeneous architectures, while ensuring compliance with non-functional requirements, including those on real-time performance of the system.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures paral·leles
dc.subject.lcshHigh performance computing
dc.subject.lcshCUDA (Computer architecture)
dc.subject.lcshCyber-physical systems series
dc.subject.otherParallel programming models
dc.subject.otherParallel and heterogeneous embedded processor architectures
dc.subject.otherModel-driven approaches
dc.subject.otherSafety-critical embedded systems
dc.titleThe AMPERE Project: A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimization
dc.typeConference report
dc.subject.lemacProcessament en paral·lel (Ordinadors)
dc.identifier.doi10.1109/ISORC49007.2020.00042
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9113000
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/871669/EU/A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation/AMPERE
local.citation.contributorObject-Oriented Real-Time Distributed Computing, International Symposium on
local.citation.publicationName2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC): Nashville, TN, USA, 2020: proceedings
local.citation.startingPage201
local.citation.endingPage206


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder