Show simple item record

dc.contributor.authorLeón Medina, Jersson Xavier
dc.contributor.authorAnaya Vejar, Maribel
dc.contributor.authorPozo Montero, Francesc
dc.contributor.authorTibaduiza Burgos, Diego Alexander
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Sísmica i Dinàmica Estructural
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2020-06-23T11:24:37Z
dc.date.issued2019
dc.identifier.citationLeon-Medina, J. X. [et al.]. Application of manifold learning algorithms to improve the classification performance of an electronic nose. A: IEEE International Instrumentation and Measurement Technology Conference. "I2MTC 2020 - IEEE International Instrumentation and Measurement Technology Conference: Dubrovnik, Croatia: 25 - 28 May, 2020". Institute of Electrical and Electronics Engineers (IEEE), 2019, p. 1-6.
dc.identifier.urihttp://hdl.handle.net/2117/191406
dc.description.abstractThe problem of classification and the use of robust methodologies in electronic nose sensor arrays applications are still open. Among the several steps in the developed method- ologies, it is clear that feature extraction methods are one of the tools that allow improving the classification accuracy in this kind of sensors. As a contribution to solving this problem, in this work, a machine learning methodology is introduced to improve the signal processing and the development of methodologies in the classification task with electronic noses. The methodology considers a normalization to scale the data from the sensors, and four manifold learning algorithms were compared to reduce the dimensionality of the data at the input of the classification machine, these methods are Kernel PCA, Isomap, Laplacian Eigenmaps, and Locally Linear Embedding. The classifier used as a machine learning algorithm was K-NearestNeighbor (KNN) with Euclidean distance and one neighbor. To validate the methodology, a dataset of 3600 measurements that measured six volatile organic compounds is used. Holdout cross-validation approach was used to evaluate the proposed methodology, results showed the best classification accuracy of 98.33% was reached by Kernel PCA as a nonlinear feature extraction method. Finally, the influence in the number of dimensions used to reduce the data was determined to establish the correct number according to the best classification rate in the classification process.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshAlgorithms
dc.subject.otherElectronic nose
dc.subject.otherFeature extraction
dc.subject.otherManifold learning
dc.subject.otherSubspace learning
dc.subject.otherOdor recognition
dc.titleApplication of manifold learning algorithms to improve the classification performance of an electronic nose
dc.typeConference report
dc.subject.lemacAlgorismes
dc.subject.lemacNas electrònic
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.relation.publisherversionhttps://i2mtc2020.ieee-ims.org/
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac26868481
dc.description.versionPostprint (author's final draft)
dc.date.lift10000-01-01
local.citation.authorLeon-Medina, J. X.; Anaya, M.; Pozo, F.; Tibaduiza, Diego Alexander
local.citation.contributorIEEE International Instrumentation and Measurement Technology Conference
local.citation.publicationNameI2MTC 2020 - IEEE International Instrumentation and Measurement Technology Conference: Dubrovnik, Croatia: 25 - 28 May, 2020
local.citation.startingPage1
local.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record