Show simple item record

dc.contributor.authorOrellana Bech, Bernat
dc.contributor.authorMonclús Lahoya, Eva
dc.contributor.authorNavazo Álvaro, Isabel
dc.contributor.authorBrunet Crosa, Pere
dc.contributor.authorBendezú García, Álvaro
dc.contributor.authorAzpiroz Vidaur, Fernando
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Computació
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2020-06-23T08:40:59Z
dc.date.issued2020-07-01
dc.identifier.citationOrellana, B. [et al.]. A scalable approach to T2-MRI colon segmentation. "Medical image analysis", 1 Juliol 2020, vol. 63, p. 1-21.
dc.identifier.issn1361-8415
dc.identifier.urihttp://hdl.handle.net/2117/191365
dc.description.abstractThe study of the colonic volume is a procedure with strong relevance to gastroenterologists. Depending on the clinical protocols, the volume analysis has to be performed on MRI of the unprepared colon without contrast administration. In such circumstances, existing measurement procedures are cumbersome and time-consuming for the specialists. The algorithm presented in this paper permits a quasi-automatic segmentation of the unprepared colon on T2-weighted MRI scans. The segmentation algorithm is organized as a three-stage pipeline. In the first stage, a custom tubularity filter is run to detect colon candidate areas. The specialists provide a list of points along the colon trajectory, which are combined with tubularity information to calculate an estimation of the colon medial path. In the second stage, we delimit the region of interest by applying custom segmentation algorithms to detect colon neighboring regions and the fat capsule containing abdominal organs. Finally, within the reduced search space, segmentation is performed via 3D graph-cuts in a three-stage multigrid approach. Our algorithm was tested on MRI abdominal scans, including different acquisition resolutions, and its results were compared to the colon ground truth segmentations provided by the specialists. The experiments proved the accuracy, efficiency, and usability of the algorithm, while the variability of the scan resolutions contributed to demonstrate the computational scalability of the multigrid architecture. The system is fully applicable to the colon measurement clinical routine, being a substantial step towards a fully automated segmentation.
dc.format.extent21 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica
dc.subject.lcshAlgorithms
dc.subject.lcshImaging systems in medicine
dc.subject.lcshImage processing
dc.subject.lcshMedicine
dc.subject.lcshGraph theory
dc.subject.otherColon segmentation
dc.subject.otherMRI
dc.subject.otherGraph-cuts
dc.subject.otherTubularity
dc.titleA scalable approach to T2-MRI colon segmentation
dc.typeArticle
dc.subject.lemacAlgorismes
dc.subject.lemacImatges mèdiques
dc.subject.lemacImatges -- Processament
dc.subject.lemacMedicina
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica
dc.identifier.doi10.1016/j.media.2020.101697
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S1361841520300621
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac28722552
dc.description.versionPostprint (author's final draft)
dc.date.lift2022-04-13
local.citation.authorOrellana, B.; Monclús, E.; Navazo, I.; Brunet, P.; Bendezú, Á.; Azpiroz, F.
local.citation.publicationNameMedical image analysis
local.citation.volume63
local.citation.startingPage1
local.citation.endingPage21


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain