Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
62.328 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Computació
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Computació
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A scalable approach to T2-MRI colon segmentation

Thumbnail
View/Open
ViewPageProof_MEDIMA_101697.pdf (11,80Mb)
 
10.1016/j.media.2020.101697
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/191365

Show full item record
Orellana Bech, BernatMés informacióMés informació
Monclús Lahoya, EvaMés informacióMés informacióMés informació
Navazo Álvaro, IsabelMés informacióMés informació
Brunet Crosa, PereMés informacióMés informació
Bendezú García, Álvaro
Azpiroz Vidaur, Fernando
Document typeArticle
Defense date2020-07-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The study of the colonic volume is a procedure with strong relevance to gastroenterologists. Depending on the clinical protocols, the volume analysis has to be performed on MRI of the unprepared colon without contrast administration. In such circumstances, existing measurement procedures are cumbersome and time-consuming for the specialists. The algorithm presented in this paper permits a quasi-automatic segmentation of the unprepared colon on T2-weighted MRI scans. The segmentation algorithm is organized as a three-stage pipeline. In the first stage, a custom tubularity filter is run to detect colon candidate areas. The specialists provide a list of points along the colon trajectory, which are combined with tubularity information to calculate an estimation of the colon medial path. In the second stage, we delimit the region of interest by applying custom segmentation algorithms to detect colon neighboring regions and the fat capsule containing abdominal organs. Finally, within the reduced search space, segmentation is performed via 3D graph-cuts in a three-stage multigrid approach. Our algorithm was tested on MRI abdominal scans, including different acquisition resolutions, and its results were compared to the colon ground truth segmentations provided by the specialists. The experiments proved the accuracy, efficiency, and usability of the algorithm, while the variability of the scan resolutions contributed to demonstrate the computational scalability of the multigrid architecture. The system is fully applicable to the colon measurement clinical routine, being a substantial step towards a fully automated segmentation.
CitationOrellana, B. [et al.]. A scalable approach to T2-MRI colon segmentation. "Medical image analysis", 1 Juliol 2020, vol. 63, p. 1-21. 
URIhttp://hdl.handle.net/2117/191365
DOI10.1016/j.media.2020.101697
ISSN1361-8415
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S1361841520300621
Collections
  • Doctorat en Computació - Articles de revista [42]
  • Departament de Ciències de la Computació - Articles de revista [1.018]
  • ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica - Articles de revista [93]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ViewPageProof_MEDIMA_101697.pdf11,80MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina