Simulation of macrosegregation benchmark on a non-uniform computational node arrangement with a meshless method

Cita com:
hdl:2117/190975
Document typeConference report
Defense date2017
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
An application of a meshless numerical method on a macrosegregation benchmark case is developed in the present paper. The test case is solidification in 2D rectangular cavity, filled with liquid metal and chilled from both sides. This is a highly non-linear problem due to a strong coupling of the macroscopic transport equations with the microsegregation model. The main result is the macrosegregation pattern of the solidified metal Al4.5wt%Cu alloy is used for evaluation of the problem. The model uses diffuse approximate meshless method with the second-order polynomial basis for spatial integration and explicit time-stepping. Simulations are performed on uniform and non-uniform computational node arrangements and compared to each other. The results on uniform and non-uniform node arrangements show a very good matching with the finite volume method results and results based on radial basis function collocation method. This shows that diffuse approximate method based on non-uniform node arrangements can be used for solving macrosegregation problems.
ISBN978-84-946909-2-1
Files | Description | Size | Format | View |
---|---|---|---|---|
Coupled-2017-11 ... on of macrosegregation.pdf | 419,9Kb | View/Open |