Show simple item record

dc.contributor.authorGrekov, Mikhail A.
dc.contributor.authorVakaeva, Aleksandra B.
dc.date.accessioned2020-06-16T07:47:38Z
dc.date.available2020-06-16T07:47:38Z
dc.date.issued2017
dc.identifier.isbn978-84-946909-2-1
dc.identifier.urihttp://hdl.handle.net/2117/190789
dc.description.abstractThe two-dimensional boundary value problem on a nearly circular inclusion in an infinity elastic solid is solved. It is supposed that the uniform stress state takes place at infinity. Contact of the inclusion with the matrix satisfies to the ideal conditions of cohesion. To solve this problem, Muskhelishvili’s method of complex potentials is used. Following the boundary perturbation method, this potentials are sought in terms of power series in a small parameter. In each-order approximation, the problem is reduced to the solving two independent Riemann – Hilbert’s boundary problems. It is constructed an algorithm for funding any-order approximation in terms of elementary functions. Based on the first-order approximation numerical results for hoop stresses at the interface are presented under uniaxial tension at infinity.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherNearly Circular Inclusion, 2-D Problem, Perturbation Method, Complex Potentials, Stress Concentration
dc.titleThe perturbation method in the problem on a nearly circular inclusion in an elastic body
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED VII
local.citation.publicationNameCOUPLED VII : proceedings of the VII International Conference on Computational Methods for Coupled Problems in Science and Engineering
local.citation.startingPage963
local.citation.endingPage971


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record