Mostra el registre d'ítem simple

dc.contributor.authorMellado González, Juan Pedro
dc.contributor.authorSarkar, Sutanu
dc.contributor.authorPantano, Carlos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2020-06-15T10:47:04Z
dc.date.available2020-06-15T10:47:04Z
dc.date.issued2003-09-16
dc.identifier.citationMellado, J. P.; Sarkar, S.; Pantano, C. Reconstruction subgrid models for nonpremixed combustion. "Physics of fluids", 16 Setembre 2003, vol. 15, p. 3280-3307.
dc.identifier.issn1070-6631
dc.identifier.urihttp://hdl.handle.net/2117/190718
dc.description.abstractLarge-eddy simulation of combustion problems involves highly nonlinear terms that, when filtered, result in a contribution from subgrid fluctuations of scalars, Z, to the dynamics of the filtered value. This subgrid contribution requires modeling. Reconstruction models try to recover as much information as possible from the resolved field Z ¯, based on a deconvolution procedure to obtain an intermediate field ZM . The approximate reconstruction using moments ~ARM! method combines approximate reconstruction, a purely mathematical procedure, with additional physics-based information required to match specific scalar moments, in the simplest case, the Reynolds-averaged value of the subgrid variance. Here, results from the analysis of the ARM model in the case of a spatially evolving turbulent plane jet are presented. A priori and a posteriori evaluations using data from direct numerical simulation are carried out. The nonlinearities considered are representative of reacting flows: power functions, the dependence of the density on the mixture fraction ~relevant for conserved scalar approaches! and the Arrhenius nonlinearity ~very localized in Z space!. Comparisons are made against the more popular beta probability density function ~PDF! approach in the a priori analysis, trying to define ranges of validity for each approach. The results show that the ARM model is able to capture the subgrid part of the variance accurately over a wide range of filter sizes and performs well for the different nonlinearities, giving uniformly better predictions than the beta PDF for the polynomial case. In the case of the density and Arrhenius nonlinearities, the relative performance of the ARM and traditional PDF approaches depends on the size of the subgrid variance with respect to a characteristic scale of each function. Furthermore, the sources of error associated with the ARM method are considered and analytical bounds on that error are obtained
dc.format.extent28 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshLarge-eddy simulations
dc.subject.lcshFluid dynamics
dc.subject.lcshTurbulence--Computer simulation
dc.subject.lcshAtmospheric turbulence
dc.subject.otherLarge Eddy Simulations
dc.subject.otherDirect Numerical Simulations
dc.titleReconstruction subgrid models for nonpremixed combustion
dc.typeArticle
dc.subject.lemacDinàmica de fluids
dc.subject.lemacTurbulència atmosfèrica
dc.identifier.doi10.1063/1.1608008
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/1.1608008
dc.rights.accessOpen Access
local.identifier.drac27658453
dc.description.versionPostprint (published version)
local.citation.authorMellado, J. P.; Sarkar, S.; Pantano, C.
local.citation.publicationNamePhysics of fluids
local.citation.volume15
local.citation.startingPage3280
local.citation.endingPage3307


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple