Mostra el registre d'ítem simple

dc.contributor.authorOtero Calviño, Beatriz
dc.contributor.authorRojas, Otilio
dc.contributor.authorMoya, Ferrán
dc.contributor.authorCastillo, José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2020-06-11T09:12:56Z
dc.date.available2022-05-15T00:28:15Z
dc.date.issued2020-06-15
dc.identifier.citationOtero, B. [et al.]. Alternating direction implicit time integrations for finite difference acoustic wave propagation: parallelization and convergence. "Computers and fluids", 15 Juny 2020, vol. 205, article 104584, p. 1-12.
dc.identifier.issn0045-7930
dc.identifier.otherhttp://arxiv.org/abs/2006.07583
dc.identifier.urihttp://hdl.handle.net/2117/190495
dc.description.abstractThis work studies the parallelization and empirical convergence of two finite difference acoustic wave propagation methods on 2-D rectangular grids, that use the same alternating direction implicit (ADI) time integration. This ADI integration is based on a second-order implicit Crank-Nicolson temporal discretization that is factored out by a Peaceman-Rachford decomposition of the time and space equation terms. In space, these methods highly diverge and apply different fourth-order accurate differentiation techniques. The first method uses compact finite differences (CFD) on nodal meshes that requires solving tridiagonal linear systems along each grid line, while the second one employs staggered-grid mimetic finite differences (MFD). For each method, we implement three parallel versions: (i) a multithreaded code in Octave, (ii) a C++ code that exploits OpenMP loop parallelization, and (iii) a CUDA kernel for a NVIDIA GTX 960 Maxwell card. In these implementations, the main source of parallelism is the simultaneous ADI updating of each wave field matrix, either column-wise or row-wise, according to the differentiation direction. In our numerical applications, the highest performances are displayed by the CFD and MFD CUDA codes that achieve speedups of 7.21x and 15.81x, respectively, relative to their C++ sequential counterparts with optimal compilation flags. Our test cases also allow to assess the numerical convergence and accuracy of both methods. In a problem with exact harmonic solution, both methods exhibit convergence rates close to 4 and the MDF accuracy is practically higher. Alternatively, both convergences decay to second order on smooth problems with severe gradients at boundaries, and the MDF rates degrade in highly-resolved grids leading to larger inaccuracies. This transition of empirical convergences agrees with the nominal truncation errors in space and time.
dc.description.sponsorshipFirst author was partially supported by the Generalitat de Catalunya under agreement 2017-SGR-962 and the RIS3CAT DRAC project (001-P-001723). The research leading to these results has received funding from the European Union’s Horizon 2020 Programme, grant agreement No. 828947, and from the Mexican Department of Energy, CONACYT-SENER Hidrocarburos grant agreement No. B-S-69926. This project has also received funding from the European Union’s Horizon 2020research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS). O. Rojas also thank the European Union’s Horizon 2020 Programme under the ChEESE Project, grant agreement no. 823844.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights©2020 Elsevier
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic
dc.subject.lcshFinite differences
dc.subject.lcshApplication program interfaces (Computer software)
dc.subject.lcshSound-waves
dc.subject.otherCUDA and OpenMP programming
dc.subject.otherADI
dc.subject.otherCompact finite differences
dc.subject.otherMimetic operators
dc.titleAlternating direction implicit time integrations for finite difference acoustic wave propagation: parallelization and convergence
dc.typeArticle
dc.subject.lemacDiferències finites
dc.subject.lemacInterfícies de programació d'aplicacions (Programari)
dc.subject.lemacOnes sonores
dc.contributor.groupUniversitat Politècnica de Catalunya. VIRTUOS - Virtualisation and Operating Systems
dc.identifier.doi10.1016/j.compfluid.2020.104584
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0045793020301560
dc.rights.accessOpen Access
local.identifier.drac28486179
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/777778/EU/Multiscale Inversion of Porous Rock Physics using High-Performance Simulators: Bridging the Gap between Mathematics and Geophysics/MATHROCKS
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/823844/EU/Centre of Excellence for Exascale in Solid Earth/ChEESE
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/828947/EU/Supercomputing and Energy for Mexico/ENERXICO
local.citation.authorOtero, B.; Rojas, O.; Moya, F.; Castillo, J.
local.citation.publicationNameComputers and fluids
local.citation.volume205
local.citation.numberarticle 104584
local.citation.startingPage1
local.citation.endingPage12


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple