Analysis of a thermoelastic problem of type III
View/Open
BFQ_EJPP20.pdf (1,231Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/190455
Document typeArticle
Defense date2020-06
Rights accessRestricted access - publisher's policy
(embargoed until 2021-06-08)
Abstract
This paper investigates several aspects of the linear type III thermoelastic theory. First, we consider the most general system of equations for this theory in the case that the conductivity rate is not definite and we prove an existence theorem by means of the semigroups theory. In fact, we show that the solutions of the problem generate a quasi-contractive semigroup. Then, assuming that the internal energy is positive definite, the numerical analysis of this problem is performed, by using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A discrete stability property and a priori error estimates are shown, from which the linear convergence of the algorithm is deduced. Finally, some one- and two-dimensional numerical simulations are presented, for the homogeneous and isotropic case, to demonstrate the accuracy of the approximation and the behaviour of the solution.
CitationBazarra, N.; Fernández, J.; Quintanilla, R. Analysis of a thermoelastic problem of type III. "European physical journal plus", Juny 2020, vol. 135, núm. 6, p. 480-1-480-25.
ISSN2190-5444
Publisher versionhttps://link.springer.com/article/10.1140/epjp/s13360-020-00475-9
Files | Description | Size | Format | View |
---|---|---|---|---|
BFQ_EJPP20.pdf![]() | 1,231Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder