Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A refined statistical cloud closure using double-Gaussian probability density functions

Thumbnail
View/Open
NaumannEtal2013.pdf (2,967Mb)
 
10.5194/gmd-6-1641-2013
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/190377

Show full item record
Naumann, Ann Kristin
Seifert, Alex
Mellado González, Juan PedroMés informacióMés informació
Document typeArticle
Defense date2013-10-08
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We introduce a probability density function (PDF)-based scheme to parameterize cloud fraction, average liquid water and liquid water flux in large-scale models, that is developed from and tested against large-eddy simulations and observational data. Because the tails of the PDFs are crucial for an appropriate parameterization of cloud properties, we use a double-Gaussian distribution that is able to represent the observed, skewed PDFs properly. Introducing two closure equations, the resulting parameterization relies on the first three moments of the subgrid variability of temperature and moisture as input parameters. The parameterization is found to be superior to a single-Gaussian approach in diagnosing the cloud fraction and average liquid water profiles. A priori testing also suggests improved accuracy compared to existing double-Gaussian closures. Furthermore, we find that the error of the new parameterization is smallest for a horizontal resolution of about 5–20 km and also depends on the appearance of mesoscale structures that are accompanied by higher rain rates. In combination with simple autoconversion schemes that only depend on the liquid water, the error introduced by the new parameterization is orders of magnitude smaller than the difference between various autoconversion schemes. For the liquid water flux, we introduce a parameterization that is depending on the skewness of the subgrid variability of temperature and moisture and that reproduces the profiles of the liquid water flux well.
CitationNaumann, A.; Seifert, A.; Mellado, J. P. A refined statistical cloud closure using double-Gaussian probability density functions. "Geoscientific model development", 8 Octubre 2013, vol. 6, p. 1641-1657. 
URIhttp://hdl.handle.net/2117/190377
DOI10.5194/gmd-6-1641-2013
ISSN1991-959X
Publisher versionhttps://www.geosci-model-dev.net/6/1641/2013/
Collections
  • Departament de Física - Articles de revista [2.047]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
NaumannEtal2013.pdf2,967MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina