Show simple item record

dc.contributor.authorSerra, Tiziano
dc.contributor.authorPlanell Estany, Josep Anton
dc.contributor.authorNavarro Toro, Melba Eugenia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2013-04-29T10:31:29Z
dc.date.created2013-03
dc.date.issued2013-03
dc.identifier.citationSerra, T.; Planell, J.; Navarro, M. High-resolution PLA-based composite scaffolds via 3-D printing technology. "Acta biomaterialia", Març 2013, vol. 9, núm. 3, p. 5521-5530.
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/2117/19031
dc.description.abstractFabrication of new biodegradable scaffolds that guide and stimulate tissue regeneration is still a major issue in tissue engineering approaches. Scaffolds that possess adequate biodegradability, pore size, interconnectivity, bioactivity and mechanical properties in accordance with the injured tissue are required. This work aimed to develop and characterize three-dimensional (3-D) scaffolds that fulfill the aforementioned requirements. For this, a nozzle-based rapid prototyping system was used to combine polylactic acid and a bioactive CaP glass to fabricate 3-D biodegradable scaffolds with two patterns (orthogonal and displaced double layer). Scanning electron microscopy and micro-computer tomography showed that 3-D scaffolds had completely interconnected porosity, uniform distribution of the glass particles, and a controlled and repetitive architecture. Surface properties were also assessed, showing that the incorporation of glass particles increased both the roughness and the hydrophilicity of the scaffolds. Mechanical tests indicated that compression strength is dependent on the scaffold geometry and the presence of glass. Preliminary cell response was studied with primary mesenchymal stem cells (MSC) and revealed that CaP glass improved cell adhesion. Overall, the results showed the suitability of the technique/materials combination to develop 3-D porous scaffolds and their initial biocompatibility, both being valuable characteristics for tissue engineering applications.
dc.format.extent10 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshTissue scaffolds
dc.subject.otherBiodegradable
dc.subject.otherComposite
dc.subject.otherPolylactic acid
dc.subject.otherRapid prototyping
dc.subject.otherScaffold
dc.titleHigh-resolution PLA-based composite scaffolds via 3-D printing technology
dc.typeArticle
dc.subject.lemacTeixits -- Bastides
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1016/j.actbio.2012.10.041
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1742706112005338
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac11890315
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorSerra, T.; Planell, J.; Navarro, M.
local.citation.publicationNameActa biomaterialia
local.citation.volume9
local.citation.number3
local.citation.startingPage5521
local.citation.endingPage5530


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record