Show simple item record

dc.contributor.authorGkatzioura, Anna
dc.contributor.authorSànchez-Marrè, Miquel
dc.contributor.authorGibert, Karina
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2020-06-08T12:01:33Z
dc.date.available2020-06-08T12:01:33Z
dc.date.issued2018
dc.identifier.citationGatzioura, A.; Sànchez-Marrè, M.; Gibert, K. A hybrid recommender system for industrial symbiotic networks. A: International Congress on Environmental Modelling and Software. "iEMSs 2018 proceedings". 2018, p. 1-6.
dc.identifier.urihttp://hdl.handle.net/2117/190223
dc.description.abstractVarious solutions enabling the realization of synergies in Industrial Symbiotic Networks have been proposed. However, incorporating intelligence into the platforms that these networks use, supporting the involved actors to automatically find possible candidates able to cover their needs, is still of high importance. Usually, the actors participating in these networks act based on previously predefined patterns, without taking into account all the possible alternatives, usually due to the difficulty of finding and properly evaluating them. Therefore, the recommendation of new matches that the users were not aware of is a big challenge, as companies many times are not willing to change their established workflows if they are not sure about the outcome. Thus, the ability of a platform to properly identify symbiotic alternatives that could provide both economic and environmental benefits for the companies, and the sector as a whole, is of high importance and delivering such recommendations is crucial. In this work, we propose a hybrid recommender system aiming to support users in properly filtering and identifying the symbiotic relationships that may provide them an improved performance. Several criteria are taken into account in order to generate, each time, the list of the most suitable solutions for the current user, at a given moment. In addition, the implemented system uses a graph-based similarity model in order to identify resource similarities while performing a hybrid case-based recommendation in order to find the optimal solutions according to more features than just the resources’ similarities.
dc.format.extent6 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Impacte ambiental
dc.subjectÀrees temàtiques de la UPC::Economia i organització d'empreses::Gestió del coneixement::Sistemes d'informació
dc.subject.lcshCase-based reasoning
dc.subject.otherHybrid Recommender Systems
dc.subject.otherIndustrial Symbiotic Networks
dc.subject.otherCase-Based Reasoning
dc.subject.otherWaste Optimization.
dc.titleA hybrid recommender system for industrial symbiotic networks
dc.typeConference lecture
dc.subject.lemacRaonament basat en casos
dc.contributor.groupUniversitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://scholarsarchive.byu.edu/iemssconference/2018/Stream-B/23/
dc.rights.accessOpen Access
local.identifier.drac23597804
dc.description.versionPostprint (published version)
local.citation.authorGatzioura, A.; Sànchez-Marrè, M.; Gibert, Karina
local.citation.contributorInternational Congress on Environmental Modelling and Software
local.citation.publicationNameiEMSs 2018 proceedings
local.citation.startingPage1
local.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder