Show simple item record

dc.contributor.authorPuigferrat Pérez, Albert
dc.contributor.authorPouplana Sarda, Ignasi de
dc.contributor.authorOñate Ibáñez de Navarra, Eugenio
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-06-04T11:31:08Z
dc.date.issued2020-06
dc.identifier.citationPuigferrat, A.; De Pouplana, I.; Oñate, E. FIC–FEM formulation for the multidimensional transient advection–diffusion–absorption equation. "Computer methods in applied mechanics and engineering", Juny 2020, vol. 365, p. 112984:1-112984:22.
dc.identifier.issn0045-7825
dc.identifier.otherhttps://www.scipedia.com/public/Puigferrat_et_al_2020a#
dc.identifier.urihttp://hdl.handle.net/2117/189994
dc.description.abstractIn this paper we present a stabilized FIC–FEM formulation for the multidimensional transient advection–diffusion–absorption equation. The starting point is the non-local form of the governing equations for the multidimensional transient advection–diffusion–absorption problems obtained via the Finite Increment Calculus (FIC) procedure. The FIC governing equations have a residual form that introduces a characteristic length vector that depends on streamline, absorption and shock capturing stabilization parameters, as well as on a characteristic element size that ensures a stabilized numerical solution using a standard Galerkin FEM. The value of the stabilization parameters is obtained as an extension of the steady-state form. The accuracy of the FIC–FEM formulation is verified in the solution of several transient advection–diffusion–absorption problems using regular meshes of 3-noded triangles and 4-noded quadrilaterals.
dc.description.sponsorshipThis research was partially funded by the PRECISE, Spain project (BIA2017-83805-R) of the National Research Plan of the Spanish Government. Support for this work was also provided from the Office for Naval Research Global (ONRG) of the US Navy through the NICE-SHIP project.The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in RTD (CEX2018-000797-S). We also acknowledge the financial support of the CERCA programme of the Generalitat de Catalunya (Spain).
dc.language.isoeng
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids
dc.subject.lcshFluid dynamics--Mathematical models
dc.subject.otherAdvection–diffusion–absorption
dc.subject.otherTransient solution
dc.subject.otherMultidimensional
dc.subject.otherFinite element method
dc.subject.otherFinite increment calculus
dc.subject.otherFIC
dc.titleFIC–FEM formulation for the multidimensional transient advection–diffusion–absorption equation
dc.typeArticle
dc.subject.lemacDinàmica de fluids -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria
dc.identifier.doi10.1016/j.cma.2020.112984
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0045782520301675
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac28440440
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MICIU/BIA2017-83805-R
dc.date.lift2022-03-21
local.citation.authorPuigferrat, A.; De Pouplana, I.; Oñate, E.
local.citation.publicationNameComputer methods in applied mechanics and engineering
local.citation.volume365
local.citation.startingPage112984:1
local.citation.endingPage112984:22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic