Show simple item record

dc.contributor.authorRocadenbosch Burillo, Francisco
dc.contributor.authorVázquez Grau, Gregorio
dc.contributor.authorComerón Tejero, Adolfo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2008-03-16T12:04:39Z
dc.date.available2008-03-16T12:04:39Z
dc.date.created1997-09-29
dc.date.issued1998-01-31
dc.identifier.citationRocadenbosch, F.; Vazquez, G.; Comeron, A. Adaptive filter solution for processing lidar returns: optical parameter estimation. Applied optics, 1998, vol. 37, núm. 30,p. 7019-7034.
dc.identifier.issn0003-6935
dc.identifier.urihttp://hdl.handle.net/2117/1894
dc.description.abstractJoint estimation of extinction and backscatter simulated profiles from elastic-backscatter lidar return signals is tackled by means of an extended Kalman filter (EKF). First, we introduced the issue from a theoretical point of view by using both an EKF formulation and an appropriate atmospheric stochastic model; second, it is tested through extensive simulation and under simplified conditions; and, finally, a first real application is discussed. An atmospheric model including both temporal and spatial correlation features is introduced to describe approximate fluctuation statistics in the sought-after atmospheric optical parameters and hence to include a priori information in the algorithm. Provided that reasonable models are given for the filter, inversion errors are shown to depend strongly on the atmospheric condition (i.e., the visibility) and the signal-to-noise ratio along the exploration path in spite of modeling errors in the assumed statistical properties of the atmospheric optical parameters. This is of advantage in the performance of the Kalman filter because they are often the point of most concern in identification problems. In light of the adaptive behavior of the filter and the inversion results, the EKF approach promises a successful alternative to present-day nonmemory algorithms based on exponential-curve fitting or differential equation formulations such as Klett’s method.
dc.format.extent7019-7034
dc.language.isoeng
dc.publisherOPTICAL SOC AMER
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
dc.subject.lcshOptical radar
dc.subject.lcshStochastic systems
dc.subject.lcshLaser beams Measurement
dc.subject.lcshGeophysical instruments
dc.subject.lcshImage processing
dc.subject.otherKalman filtering
dc.subject.otherKlett's method
dc.titleAdaptive Filter Solution For Processing Lidar Returns: Optical Parameter Estimation
dc.typeArticle
dc.subject.lemacRadar òptic
dc.subject.lemacSistemes estocàstics
dc.subject.lemacLàsers
dc.subject.lemacGeofísica -- Aparells i instruments
dc.subject.lemacImatge -- Processament
dc.contributor.groupUniversitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder