Simulation of clay soil de-compaction by subsoiling process using discrete element method

Cita com:
hdl:2117/189479
Document typeConference report
Defense date2011
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
High pressures on the soil surface by action of heavy machinery and tillage process cause soil compaction and hardpan layers formation. De-compaction is a energy demanding operation applied to break deeply compacted soil for agricultural uses. Three dimensional simulations of soil decompaction are presented based on a soil-tool interaction model implemented in DEMeter software. Formulation of soil-soil and soil-tool interaction are combined into an elastic-plastic particle based model for soil deformation and evaluated in different tension states among soil particles; The macromechanical input parameters include: adhesion, friction, Young’s modulus, Poisson’s coefficient, elastic limit, plastic limit and soil density. Compression triaxial tests and shear box tests were carried out in order to obtain the required mechanical properties for a tropical clay soil. Simulations of unconfined compression tests using different particle sizes and inter-particle tension were used to calibrate the model to experimental stress-strain curves. The performance of complex tillage tools geometries is tested with 3D simulations and evaluated based on the reaction force on the tool as a function of time and displacement. The results show qualitative and quantitative adjusts of real patter of soil behaviour.
ISBN978-84-89925-67-0
Files | Description | Size | Format | View |
---|---|---|---|---|
Particles_2011- ... lay soil de-compaction.pdf | 457,2Kb | View/Open |