Show simple item record

dc.contributor.authorFabbri, Marco
dc.contributor.authorBlas del Hoyo, Alfredo de
dc.contributor.authorRiego Pérez, Albert
dc.contributor.authorDies Llovera, Javier
dc.contributor.authorZamora Poveda, Imanol
dc.contributor.authorBaeza Pérez, Eduard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Nuclear i de les Radiacions Ionitzants
dc.date.accessioned2020-05-19T11:42:13Z
dc.date.available2020-05-19T11:42:13Z
dc.date.issued2017-11
dc.identifier.citationFabbri, M. [et al.]. Methodology for the improvement of the AINA code wall-model applied to DEMO WCPB blanket. "Fusion engineering and design", Novembre 2017, vol. 124, p. 1195-1198.
dc.identifier.issn0920-3796
dc.identifier.urihttp://hdl.handle.net/2117/188091
dc.description.abstractThe present work describes and supports the methodology for the improvement of the wall model devel-oped in AINA and its specific application to the Japanese DEMO Water Cooled Pebbled Bed. The set-upand application of this approach aims to obtain robust models by estimating the behavior of the studiedsystems as accurately as possible. These systems are represented in a simplified way. This requires thecomputation of a 3D radiation transport which has been carried out by means of MCNP6.1, ADVANTG andthermal-hydraulic calculations using ANSYS®Fluent®. Several CFD mesh typologies and discretizationshave also been employed to test the Richardson theorem. In addition, 1D simplified models have alsobeen created and optimized for their usage in AINA code. The temperature distribution also shows goodagreement (within 7%). In some cases the simplified models have not behaved in a conservative man-ner compared with the outcomes obtained for the 3D models. This observed absence of conservatism isintrinsic to the 1D approach. To cope with these effects, scaling functions have been determined as a ratiobetween the most conservative radial temperature distribution – computed by fully detailed 3D CFD –and the 1D simplified model. The scaling functions will be applied to the AINA computed wall tempera-ture distribution. To conclude, the determination and coherence of the result obtained using independenttools and approaches, ANSYS®Fluent®vs AINA thermal-hydraulic routines, lead us to recommend theproposed methodology.
dc.format.extent4 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subjectÀrees temàtiques de la UPC::Física::Termodinàmica
dc.subject.lcshThermodynamics
dc.subject.lcshNuclear fusion
dc.subject.otherSafety
dc.subject.otherMCNP
dc.subject.otherAINA
dc.subject.otherWCPB
dc.subject.otherCFD
dc.subject.otherDEMO
dc.subject.otherNuclear fusion
dc.titleMethodology for the improvement of the AINA code wall-model applied to DEMO WCPB blanket
dc.typeArticle
dc.subject.lemacTermodinàmica
dc.subject.lemacFusió nuclear
dc.contributor.groupUniversitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group
dc.contributor.groupUniversitat Politècnica de Catalunya. NERG - Grup de Recerca d'Enginyeria Nuclear
dc.identifier.doi10.1016/j.fusengdes.2017.05.027
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0920379617305720
dc.rights.accessOpen Access
local.identifier.drac21072202
dc.description.versionPostprint (author's final draft)
local.citation.authorFabbri, M.; de Blas, A.; Riego, A.; Dies, J.; Zamora, I.; Baeza, E.
local.citation.publicationNameFusion engineering and design
local.citation.volume124
local.citation.startingPage1195
local.citation.endingPage1198


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain