Show simple item record

dc.contributor.authorZhifan, Zhang
dc.contributor.authorFuren, Ming
dc.contributor.authorAman, Zhang
dc.date.accessioned2020-05-15T15:22:15Z
dc.date.available2020-05-15T15:22:15Z
dc.date.issued2015
dc.identifier.isbn978-84-944244-7-2
dc.identifier.isbnAnglès
dc.identifier.urihttp://hdl.handle.net/2117/187771
dc.description.abstractThe shaped charge jet has a stronger penetration effect onto the structure than normal charges. The SPH method with mesh-free and Lagrange properties has an advantage to solve extremely dynamic problems, such as large-deformation, moving interface and multiphase mixing and so on. Therefore, the SPH method is applied to simulate shaped charge detonation, jet formation and its penetration into a plate. And a SPH model of the shaped charge penetrating the plate is established. Firstly, the simulation of the shaped charge detonation is conducted to study the shock wave propagation and underwater explosion shock loading. Secondly, the formation of the metal jet is studied, and the jet velocity and the pressure are investigated in detail. Finally, the damage characteristics of the plate subjected to the metal jet and underwater explosion shock loading are discussed. The whole analysis and conclusions provide a reference for the structural design of shaped charge warheads.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subject.lcshFinite element method
dc.subject.lcshComputational methods in mechanics
dc.subject.lcshParticle methods (Numerical analysis)
dc.subject.otherSPH Method; Shaped Charge Jet; Underwater Explosion; Damage characteristics
dc.titleNumerical simulation of shaped charge jet penetrating a plate using smoothed particle hydrodynamics
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorPARTICLES IV
local.citation.publicationNamePARTICLES IV : proceedings of the IV International Conference on Particle-Based Methods : fundamentals and applications
local.citation.startingPage171
local.citation.endingPage182


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record