Show simple item record

dc.contributor.authorPizette, Patrick
dc.contributor.authorGovender, Nicolin
dc.contributor.authorWilke, Daniel N.
dc.contributor.authorGobe, Benjamin
dc.contributor.authorAbriak, Nor-Edine
dc.contributor.authorRajamani, Raj K.
dc.date.accessioned2020-05-14T16:11:45Z
dc.date.available2020-05-14T16:11:45Z
dc.date.issued2017
dc.identifier.isbn978-84-946909-7-6
dc.identifier.urihttp://hdl.handle.net/2117/187605
dc.description.abstractSpheres with complex contact models or clumped sphere models are classically used to model ballast for railway applications with the Discrete Element Method (DEM). These simplifications omits the angularity of the actual ballast by assuming the ballast is either round or has rounded edges. This is done by necessity to allow for practically com- putable simulations that may consist of a few hundred particles. This study demonstrates that an experimentally validated DEM simulation environment, BlazeDEM-3DGPU, that computes on the graphical processing unit (GPU) is able to simulate railway ballast with a more realistic shapes that includes angularity for railway applications. In particular, a procedure is developed that extracts polyhedral shaped ballast geometries digitized from 3D-laser scanning for use in DEM simulations. The results show that much larger number of particles can be successfully modelled allowing for new possibilities offered by the GPUs to investigate model railway problems using DEM. Specifically, in this study a typical experimental ballast box that contains up to 60 000 polyhedral particles have been simulated with the BlazeDEM-3DGPU computing environment within reasonable computing times.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshComputational methods in mechanics
dc.subject.lcshParticle methods (Numerical analysis)
dc.subject.otherGranular Materials, DEM, Ballast, Railway, 3-D laser scanning, large scale DEM simulation, polyedron
dc.title3D laser scanning technique coupled with DEM GPU simulations for railway ballasts
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorPARTICLES V
local.citation.publicationNamePARTICLES V : proceedings of the V International Conference on Particle-Based Methods : fundamentals and applications
local.citation.startingPage880
local.citation.endingPage889


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder