Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

8.911 Lectures/texts in conference proceedings
You are here:
View Item 
  •   DSpace Home
  • Congressos
  • International Conference on Particle-Based Methods (PARTICLES)
  • V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017
  • View Item
  •   DSpace Home
  • Congressos
  • International Conference on Particle-Based Methods (PARTICLES)
  • V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D laser scanning technique coupled with DEM GPU simulations for railway ballasts

Thumbnail
View/Open
Particles_2017-80_3D laser scanning technique.pdf (1,584Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/187605

Show full item record
Pizette, Patrick
Govender, Nicolin
Wilke, Daniel N.
Gobe, Benjamin
Abriak, Nor-Edine
Rajamani, Raj K.
Document typeConference report
Defense date2017
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Spheres with complex contact models or clumped sphere models are classically used to model ballast for railway applications with the Discrete Element Method (DEM). These simplifications omits the angularity of the actual ballast by assuming the ballast is either round or has rounded edges. This is done by necessity to allow for practically com- putable simulations that may consist of a few hundred particles. This study demonstrates that an experimentally validated DEM simulation environment, BlazeDEM-3DGPU, that computes on the graphical processing unit (GPU) is able to simulate railway ballast with a more realistic shapes that includes angularity for railway applications. In particular, a procedure is developed that extracts polyhedral shaped ballast geometries digitized from 3D-laser scanning for use in DEM simulations. The results show that much larger number of particles can be successfully modelled allowing for new possibilities offered by the GPUs to investigate model railway problems using DEM. Specifically, in this study a typical experimental ballast box that contains up to 60 000 polyhedral particles have been simulated with the BlazeDEM-3DGPU computing environment within reasonable computing times.
URIhttp://hdl.handle.net/2117/187605
ISBN978-84-946909-7-6
Collections
  • International Conference on Particle-Based Methods (PARTICLES) - V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017 [84]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Particles_2017-80_3D laser scanning technique.pdf1,584MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina