Mostra el registre d'ítem simple

dc.contributor.authorBorrell, Ricard
dc.contributor.authorDosimont, Damien
dc.contributor.authorGarcia Gasulla, Marta
dc.contributor.authorHouzeaux, Guillaume
dc.contributor.authorLehmkuhl Barba, Oriol
dc.contributor.authorMehta, Vishal
dc.contributor.authorOwen, Herbert
dc.contributor.authorVázquez, Mariano
dc.contributor.authorOyarzun Altamirano, Guillermo
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2020-05-14T11:11:08Z
dc.date.available2022-01-31T01:33:45Z
dc.date.issued2020-06
dc.identifier.citationBorrell, R. [et al.]. Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics. "Future Generation Computer Systems", Juny 2020, vol. 107, p. 31-48.
dc.identifier.issn0167-739X
dc.identifier.otherhttps://arxiv.org/abs/2005.05899
dc.identifier.urihttp://hdl.handle.net/2117/187527
dc.description.abstractHigh fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs.
dc.description.sponsorshipThis work is partially supported by the BSC-IBM Deep Learning Research Agreement, under JSA \Application porting, analysis and optimization for POWER and POWER AI". It has also been partially supported by the EX-CELLERAT project funded by the European Commission's ICT activity of the H2020 Programme under grant agreement number: 823691. It has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number: 846139 (Exa-FireFlows). This paper expresses the opinions of the authors and not necessarily those of the European Commission. The European Commission is not liable for any use that may be made of the information contained in this paper. This work has also been nan- cially supported by the Ministerio de Economia, Industria y Competitividad, of Spain (TRA2017-88508-R). The computing experiments of this paper have been performed on the resources of the Barcelona Supercomputing Center.
dc.format.extent18 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshHigh performance computing
dc.subject.lcshSupercomputers
dc.subject.lcshAerodynamics
dc.subject.otherHeterogeneous computing
dc.subject.otherNVIDIA volta V100
dc.subject.otherGPU computing
dc.subject.otherCFD
dc.subject.otherLoad balancing
dc.subject.otherPOWER9
dc.titleHeterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics
dc.typeArticle
dc.subject.lemacCàlcul intensiu (Informàtica)
dc.subject.lemacSupercomputadors
dc.subject.lemacCPU
dc.subject.lemacAerodinàmica
dc.identifier.doi10.1016/j.future.2020.01.045
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0167739X1930994X#!
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/823691/EU/The European Centre of Excellence for Engineering Applications/EXCELLERAT
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/846139/EU/Exascale framework for supporting high-fidelity simulations of multiphase reacting flows in complex geometries/Exa-FireFlows
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-88508-R/ES/METODOS DE ALTA PRECISION PARA EL DISEÑO DE AERONAVES DE NUEVA GENERACION/
local.citation.publicationNameFuture Generation Computer Systems
local.citation.volume107
local.citation.startingPage31
local.citation.endingPage48


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple