Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DMR API: improving cluster productivity by turning applications into malleable

Thumbnail
View/Open
DMR_API.pdf (1,800Mb)
Share:
 
 
10.1016/j.parco.2018.07.006
 
  View Usage Statistics
Cita com:
hdl:2117/187383

Show full item record
Iserte, Sergio
Mayo, Rafael
Quintana Ortí, Enrique Salvador
Beltran, vicenç
Peña, AntonioMés informació
Document typeArticle
Defense date2018-10
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Adaptive workloads can change on–the–fly the configuration of their jobs, in terms of number of processes. To carry out these job reconfigurations, we have designed a methodology which enables a job to communicate with the resource manager and, through the runtime, to change its number of MPI ranks. The collaboration between both the workload manager—aware of the queue of jobs and the resources allocation—and the parallel runtime—able to transparently handle the processes and the program data—is crucial for our throughput-aware malleability methodology. Hence, when a job triggers a reconfiguration, the resource manager will check the cluster status and return the appropriate action: i) expand, if there are spare resources; ii) shrink, if queued jobs can be initiated; or iii) none, if no change can improve the global productivity. In this paper, we describe the internals of our framework and demonstrate how it reduces the global workload completion time along with providing a more efficient usage of the underlying resources. For this purpose, we present a thorough study of the adaptive workloads processing by showing the detailed behavior of our framework in representative experiments.
CitationIserte, S. [et al.]. DMR API: improving cluster productivity by turning applications into malleable. "Parallel Computing", Octubre 2018, vol. 78, p. 54-66. 
URIhttp://hdl.handle.net/2117/187383
DOI10.1016/j.parco.2018.07.006
ISSN0167-8191
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0167819118302229
Other identifiershttps://arxiv.org/abs/2005.05910
Collections
  • Computer Sciences - Articles de revista [259]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
DMR_API.pdf1,800MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina