DMR API: improving cluster productivity by turning applications into malleable

View/Open
Cita com:
hdl:2117/187383
Document typeArticle
Defense date2018-10
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Adaptive workloads can change on–the–fly the configuration of their jobs, in terms of number of processes. To carry out these job reconfigurations, we have designed a methodology which enables a job to communicate with the resource manager and, through the runtime, to change its number of MPI ranks. The collaboration between both the workload manager—aware of the queue of jobs and the resources allocation—and the parallel runtime—able to transparently handle the processes and the program data—is crucial for our throughput-aware malleability methodology. Hence, when a job triggers a reconfiguration, the resource manager will check the cluster status and return the appropriate action: i) expand, if there are spare resources; ii) shrink, if queued jobs can be initiated; or iii) none, if no change can improve the global productivity. In this paper, we describe the internals of our framework and demonstrate how it reduces the global workload completion time along with providing a more efficient usage of the underlying resources. For this purpose, we present a thorough study of the adaptive workloads processing by showing the detailed behavior of our framework in representative experiments.
CitationIserte, S. [et al.]. DMR API: improving cluster productivity by turning applications into malleable. "Parallel Computing", Octubre 2018, vol. 78, p. 54-66.
ISSN0167-8191
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0167819118302229
Other identifiershttps://arxiv.org/abs/2005.05910
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
DMR_API.pdf | 1,800Mb | View/Open |