Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

8.911 Lectures/texts in conference proceedings
You are here:
View Item 
  •   DSpace Home
  • Congressos
  • International Conference on Particle-Based Methods (PARTICLES)
  • V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017
  • View Item
  •   DSpace Home
  • Congressos
  • International Conference on Particle-Based Methods (PARTICLES)
  • V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A model of granular materials partially cemented by bacterial calcite

Thumbnail
View/Open
Particles_2017-49_A model of granular materials.pdf (730,9Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/187326

Show full item record
Kashizadeh, Elaheh
Mukherjee, Abhijit
Tordesillas, Antoinette
Document typeConference report
Defense date2017
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Nature aggregates granular materials such as sand, silt and clay into form beach rocks, anthills and other forms of microbialites. A common bio-geo-chemical cementation occurs due to the mineralization of calcium through bacterial enzymatic action, often called Microbial Induced Calcium Carbonate Precipitation (MICP). Unlike engineered cement, which consumes very high amounts of energy and emits large quantities of CO2, this natural cementation occurs in ambient conditions, with negligible energy consumption. Hence, it is a sustainable construction method. Natural cementation is a gradual process, where grains are initially bonded to form clumps. The clumps grow in size to form aggregates, finally creating free standing columns. Numerical models of the mechanical behaviors of cemented grains at the various stages of aggregation offer a way to explore and understand this process. In this paper, we propose a discrete element method (DEM) of aggregated granular materials formed due to MICP. The model is applied to study different levels of aggregation of sand, from sand heaps involving unbonded and bonded grains to free standing columns. The results are compared against experiments and the most important parameters are discussed.
URIhttp://hdl.handle.net/2117/187326
ISBN978-84-946909-7-6
Collections
  • International Conference on Particle-Based Methods (PARTICLES) - V International Conference on Particle-Based Methods: fundamentals and applications (PARTICLES 2017), Hannover, 26-28 October, 2017 [84]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Particles_2017- ... of granular materials.pdf730,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina