Show simple item record

dc.contributor.authorSandoval, J. Luis
dc.contributor.authorGanzenmüller, Georg C.
dc.description.abstractSimulation of extrusion processes represents a large challenge for commonly used numerical methods. In our application for example, a hot melt is extruded whilst being rapidly cooled. Under these conditions of quenching, spinodal phase separation occurs which causes the formation of a characteristic micro-structure of the extrudate, consisting of solid and liquid phases. We model this process using a variant of the Material Point Method (MPM) [4], namely the Affine Particle-In-Cell (APIC) method [13]. Its hybrid particle/grid character is advantageous for simulating both fluid and solid behavior: pure Eulerian particle methods, such as classic SPH, fail for simulating solids, particularly in tension, whereas pure Lagrangian methods generally cannot cope with large deformations caused by material flow. APIC improves upon the original MPM method by using a so-called locally affine velocity representation [13] which allows the conservation of linear and angular momentum without the need of potentially unstable Fluid-Implicit-Particle (FLIP) techniques [3]. We analyze the convergence behavior of APIC and compare its accuracy against a traditional MPM variant, the Generalized Interpolation Material Point Method (GIMP).
dc.format.extent12 p.
dc.subject.lcshFinite element method
dc.subject.lcshComputational methods in mechanics
dc.subject.lcshParticle methods (Numerical analysis)
dc.subject.othermaterial point method, MPM, affine particle-in-cell method, APIC, meshfree, convergence analysis, extrusion
dc.titleA convergence analysis of the affine particle-in-cell method and its application in the simulation of extrusion processes
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorPARTICLES V
local.citation.publicationNamePARTICLES V : proceedings of the V International Conference on Particle-Based Methods : fundamentals and applications

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder