Show simple item record

dc.contributor.authorMagaña Nieto, Antonio
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2020-05-12T07:21:27Z
dc.date.issued2020-04-26
dc.identifier.citationMagaña, A.; Quintanilla, R. Exponential decay in one-dimensional Type II/III thermoelasticity with two porosities. "Mathematical methods in the applied sciences", 26 Abril 2020, p. 1-17.
dc.identifier.issn0170-4214
dc.identifier.urihttp://hdl.handle.net/2117/187178
dc.description.abstractIn this paper we consider the theory of thermoelasticity with a double porosity structure in the context of the Green-Naghdi types II and III heat conduction models. For the type II, the problem is given by four hyperbolic equations and it is conservative (there is no energy dissipation). We introduce in the system a couple of dissipation mechanisms in order to obtain the exponential de- cay of the solutions. To be precise, we introduce a pair of the following damping mechanisms: viscoelasticity, viscoporosities and thermal dissipation. We prove that the system is exponentially stable in three different scenarios: viscoporosity in one structure jointly with thermal dissipation, viscoporosity in each structure, and viscoporosity in one structure jointly with viscoelasticity. However, if viscoelasticity and thermal dissipation are considered together, undamped solutions can be obtained.
dc.format.extent17 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshThermoelasticity
dc.subject.lcshViscoelasticity
dc.subject.otherType II/III thermoelasticity with double voids
dc.subject.otherViscosity
dc.subject.otherViscoporosity
dc.subject.otherExponential decay.
dc.titleExponential decay in one-dimensional Type II/III thermoelasticity with two porosities
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacViscoelasticitat
dc.contributor.groupUniversitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1002/mma.6438
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74H Dynamical problems
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/mma.6438
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac27831771
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
dc.date.lift2021-04-26
local.citation.authorMagaña, A.; Quintanilla, R.
local.citation.publicationNameMathematical methods in the applied sciences
local.citation.startingPage1
local.citation.endingPage17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder