Show simple item record

dc.contributor.authorTrapic, Ivan
dc.contributor.authorPezer, Robert
dc.contributor.authorSoric, Yurica
dc.date.accessioned2020-05-06T10:45:23Z
dc.date.available2020-05-06T10:45:23Z
dc.date.issued2019
dc.identifier.isbn978-84-121101-1-1
dc.identifier.urihttp://hdl.handle.net/2117/186515
dc.description.abstractClassical continuum mechanics faces substantial difficulties for adequately describe stress and strain distributions around microstructural material discontinuities such as crystallographic defects, voids, and grain boundaries. One way to improve the microstructural model is the development of the atomistic submodel that provides a minimal increase in the amount of atomistic data, but provides more accurate stress predictions without time consuming calculation of full atomistic model. In the proposed approach continuum model, discretized by finite elements, provides a displacement field for atoms on the edge of the simulation cell of the the atomistic submodel driven by molecular dynamics. The final result is the utilization of the best from both worlds, calculation speed of the constinuum mechanics using finite elements method and informing it with relevant material properties inferred from atomistic simulations by using molecular dynamics where it is the necessary.
dc.format.extent8 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshComputational methods in mechanics
dc.subject.lcshParticle methods (Numerical analysis)
dc.titleAtomistic submodel implementation and application within microstructure analysis by molecular dynamics
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorPARTICLES VI
local.citation.startingPage230
local.citation.endingPage237


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record