dc.contributor.author | Aguirre, A. |
dc.contributor.author | Castillo, Ernesto |
dc.contributor.author | Cruchaga, Marcela A. |
dc.contributor.author | Codina, Ramon |
dc.contributor.author | Baiges Aznar, Joan |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental |
dc.date.accessioned | 2020-04-28T15:36:31Z |
dc.date.available | 2020-04-28T15:36:31Z |
dc.date.issued | 2018-07 |
dc.identifier.citation | Aguirre, A. [et al.]. Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type. "Journal of non-newtonian fluid mechanics", Juliol 2018, vol. 257, p. 22-43. |
dc.identifier.issn | 0377-0257 |
dc.identifier.other | https://www.researchgate.net/publication/323959125_Stationary_and_time-dependent_numerical_approximation_of_the_lid-driven_cavity_problem_for_power-law_fluid_flows_at_high_Reynolds_numbers_using_a_stabilized_finite_element_formulation_of_the_VMS_type |
dc.identifier.uri | http://hdl.handle.net/2117/185480 |
dc.description.abstract | In this work, a variational multiscale finite element formulation is used to approximate numerically the lid-driven cavity flow problem for high Reynolds numbers. For Newtonian fluids, this benchmark case has been extensively studied by many authors for low and moderate Reynolds numbers (up to Re=10,000), giving place to steady flows, using stationary and time-dependent approaches. For more convective flows, the solution becomes unstable, describing an oscillatory behavior. The critical Reynolds number which gives place to this time-dependent fluid dynamics has been defined over a wide range 7, 300 ≲ Re ≲ 35, 000, using different numerical approaches. In the non-Newtonian case, the cavity problem has not been studied deeply for high Reynolds number (Re > 10, 000), specifically, in the oscillatory time-dependent case. A VMS formulation is presented to be validated using existing results, to determine flow conditions at which the instability appears, and lastly, to establish new benchmark solutions for high-Reynolds numbers fluid flows using the power-law model. Obtained results show a good agreement with those reported in the references, and new data related with the oscillatory behavior of the flow has been found for the non-Newtonian case. In this regard, time-dependent flows show dependence on both Reynolds number and power-law index, and the unsteady starting point has been determined for all studied cases. It is determined that the critical Reynolds number (Rec) that defines the first Hopf bifurcation for Newtonian fluid flow is ranged between 8,100 ≲ Rec ≲ 8, 250, whereas for power-law indexes n=0.5 and n=1.5, it is 7,100 ≲ Rec ≲ 7,200 and 18,250 ≲ Rec ≲ 18,500, respectively. |
dc.description.sponsorship | This work has been partially funded by the Chilean Council for Scientific and Technological Research (CONICYT-FONDECYT 11160160). We also acknowledge the support received by the Scientific Research Projects Management Department of the Vice Presidency Research, Development and Innovation (DICYT-VRIDEI) at Universidad de Santiago de Chile in Proyecto Basal USA 1555 - Vridei 051716CSSSA_PUBLIC. Joan Baiges acknowledges the support of the Spanish Government through Ramón y Cajal grant RYC-2015-17367. R. Codina acknowledges the support received through the ICREA Academic Research Program. |
dc.format.extent | 22 p. |
dc.language.iso | eng |
dc.rights | © 2019. Elsevier |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Física::Física de fluids::Flux de fluids |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits |
dc.subject.lcsh | Fluid dynamics--Mathematical models |
dc.subject.other | Stabilized finite element method |
dc.subject.other | VMS |
dc.subject.other | High Reynolds numbers |
dc.subject.other | Lid-driven cavity flow |
dc.subject.other | Power-law fluid |
dc.subject.other | Hopf bifurcation |
dc.title | Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type |
dc.type | Article |
dc.subject.lemac | Dinàmica de fluids -- Matemàtica |
dc.contributor.group | Universitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica |
dc.identifier.doi | 10.1016/j.jnnfm.2018.03.014 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0377025717304044 |
dc.rights.access | Open Access |
local.identifier.drac | 23182759 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Aguirre, A.; Castillo, E.; Cruchaga, M. A.; Codina, R.; Baiges, J. |
local.citation.publicationName | Journal of non-newtonian fluid mechanics |
local.citation.volume | 257 |
local.citation.startingPage | 22 |
local.citation.endingPage | 43 |