Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.819 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid recommender system to improve circular economy in industrial symbiotic networks

Thumbnail
View/Open
energies-12-03546-v2.pdf (2,134Mb)
 
10.3390/en12183546
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/185448

Show full item record
Gatzioura, Anna
Sànchez-Marrè, MiquelMés informacióMés informacióMés informació
Gibert, KarinaMés informacióMés informacióMés informació
Document typeArticle
Defense date2019-09-16
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Recently, the need of improved resource trading has arisen due to resource limitations and energy optimization problems. Various platforms supporting resource exchange and waste reuse in industrial symbiotic networks are being developed. However, the actors participating in these networks still mainly act based on predefined patterns, without taking the possible alternatives into account, usually due to the difficulty of properly evaluating them. Therefore, incorporating intelligence into the platforms that these networks use, supporting the involved actors to automatically find resources able to cover their needs, is still of high importance both for the companies and the whole ecosystem. In this work, we present a hybrid recommender system to support users in properly identifying the symbiotic relationships that might provide them an improved performance. This recommender combines a graph-based model for resource similarities, while it follows the basic case-based reasoning processes to generate resource recommendations. Several criteria, apart from resource similarity, are taken into account to generate, each time, the list of the most suitable solutions. As highlighted through a use case scenario, the proposed system could play a key role in the emerging industrial symbiotic platforms, as the majority of them still do not incorporate automatic decision support mechanisms.
CitationGatzioura, A.; Sànchez-Marrè, M.; Gibert, K. A hybrid recommender system to improve circular economy in industrial symbiotic networks. "Energies", 16 Setembre 2019, vol. 12, núm. 18, p. 3546: 1-3546: 24. 
URIhttp://hdl.handle.net/2117/185448
DOI10.3390/en12183546
ISSN1996-1073
Publisher versionhttps://www.mdpi.com/1996-1073/12/18/3546
Collections
  • Departament de Ciències de la Computació - Articles de revista [1.115]
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista [125]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [784]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
energies-12-03546-v2.pdf2,134MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina