Show simple item record

dc.contributor.authorMalandrino, Andrea
dc.contributor.authorNoailly, Jérôme
dc.contributor.authorLacroix, Damien Jerome
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2013-04-02T10:31:31Z
dc.date.available2013-04-02T10:31:31Z
dc.date.created2011-08-04
dc.date.issued2011-08-04
dc.identifier.citationMalandrino, A.; Noailly, J.; Damien, D. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. "PLOS computational biology", 04 Agost 2011, vol. 7, núm. 8, p. 1-12.
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/2117/18529
dc.description.abstractIntervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition.
dc.format.extent12 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshIntervertebral disk Diseases
dc.subject.lcshBiomechanics
dc.titleThe effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes
dc.typeArticle
dc.subject.lemacDisc intervertebral -- Malalties
dc.subject.lemacBiomecànica
dc.identifier.doi10.1371/journal.pcbi.1002112
dc.rights.accessOpen Access
local.identifier.drac11686751
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/213904/EU/Novel biofunctional high porous polymer scaffolds and techniques controlling angiogenesis for the regeneration and repair of the degenerated intervertebral disc./DISC REGENERATION
local.citation.authorMalandrino, A.; Noailly, J.; Damien, D.
local.citation.publicationNamePLOS computational biology
local.citation.volume7
local.citation.number8
local.citation.startingPage1
local.citation.endingPage12
dc.identifier.pmid21829341


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record