Show simple item record

dc.contributor.authorMalandrino, Andrea
dc.contributor.authorFritsch, Andreas
dc.contributor.authorLahayne, Olaf
dc.contributor.authorKropik, Karl
dc.contributor.authorRedl, Heinz
dc.contributor.authorNoailly, Jérôme
dc.contributor.authorLacroix, Damien Jerome
dc.contributor.authorHellmich, Christian
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2013-04-02T10:20:47Z
dc.date.created2012-07-01
dc.date.issued2012-07-01
dc.identifier.citationMalandrino, A. [et al.]. Anisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach. "Materials letters", 01 Juliol 2012, vol. 78, p. 154-158.
dc.identifier.issn0167-577X
dc.identifier.urihttp://hdl.handle.net/2117/18524
dc.description.abstractThe extremely fi ne structure of vertebral cortex challenges reliable determination of the tissue's anisotropic elasticity, which is important for the spine's load carrying patterns often causing pain in patients. As a potential remedy, we here propose a combined experimental (ultrasonic) and modeling (micromechanics) approach. Longitudinalacousticwavesaresentinlongitudinal(superior -inferior,axial)aswellastransverse(circumferential) direction through millimeter-sized samples containing thi s vertebral cortex, and corr esponding wave velocities agree very well with recently identi fi ed ‘ universal ’ compositional and acoustic characteristics (J Theor Biol 287:115,2011),whicharevalidforalargedatabasecomprisingdifferent bonesfromdifferent speciesanddifferent organs. This provides evidence that the ‘ universal ’ organization patterns inherent to all the bone tissues of the aforementioned data base also hold for vertebral bone. Con sequently, an experimentally validated model covering the mechanical effects of this organization patterns (J Theor Biol 244:597, 2007, J Theor Biol 260:230, 2009) gives access to the complete elasticity tensor of human lumbar ve rtebral bone tissue, as a valuable input for structural analyses aiming at patient-speci fi cfractureriskassessm ent, e.g. based on the Finite Element Method.
dc.format.extent5 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshMicromechanics
dc.subject.lcshElasticity
dc.subject.lcshLumbar vertebrae
dc.titleAnisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach
dc.typeArticle
dc.subject.lemacMicromecànica
dc.subject.lemacElasticitat
dc.subject.lemacVèrtebres lumbars
dc.identifier.doi10.1016/j.matlet.2012.03.052
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac11686705
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/269909/EU/Functional prognosis simulation of patient-specific spinal treatment for clinical use/MYSPINE
dc.date.lift10000-01-01
local.citation.authorMalandrino, A.; Fritsch, A.; Lahayne, O.; Kropik, K.; Redl, H.; Noailly, J.; Damien, D.; Hellmich, C.
local.citation.publicationNameMaterials letters
local.citation.volume78
local.citation.startingPage154
local.citation.endingPage158


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain