An explicit–implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids
View/Open
Main article (1,545Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/185085
Document typeArticle
Defense date2019-06
Rights accessRestricted access - publisher's policy
(embargoed until 2021-03-18)
Abstract
In this paper an efficient mesh-moving Finite Element model for the simulation of the incompressible flow problems is proposed. The model is based on a combination of the explicit multi-step scheme (Runge–Kutta) with an implicit treatment of the pressure. The pressure is decoupled from the velocity and is solved for only once per time step minimizing the computational cost of the implicit step. Novel solution algorithm alleviating time step restrictions faced by the majority of the former Lagrangian approaches is presented. The method is examined with respect to its space and time accuracy as well as the computational cost. Two numerical examples are solved: one involving a problem on a domain with fixed boundaries and the other one dealing with a free surface flow. It is shown that the method can be easily parallelized.
CitationMarti, J.; Ryzhakov, P. An explicit–implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids. "Computer methods in applied mechanics and engineering", Juny 2019, vol. 350, p. 750-765.
ISSN0045-7825
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0045782519301367
Files | Description | Size | Format | View |
---|---|---|---|---|
An_explicit_implicit_finite_element_model.pdf![]() | Main article | 1,545Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 Generic