Budget-aware semi-supervised semantic and instance segmentation

Document typeConference lecture
Defense date2019
Rights accessOpen Access
Abstract
Methods that move towards less supervised scenarios are key for image segmentation, as dense labels demand significant human intervention. Generally, the annotation burden is mitigated by labeling datasets with weaker forms of supervision, e.g. image-level labels or bounding boxes. Another option are semi-supervised settings, that commonly leverage a few strong annotations and a huge number of unlabeled/weakly-labeled data. In this paper, we revisit semi-supervised segmentation schemes and narrow down significantly the annotation budget (in terms of total labeling time of the training set) compared to previous approaches. With a very simple pipeline, we demonstrate that at low annotation budgets, semi-supervised methods outperform by a wide margin weakly-supervised ones for both semantic and instance segmentation. Our approach also outperforms previous semi-supervised works at a much reduced labeling cost. We present results for the Pascal VOC benchmark and unify weakly and semi-supervised ap- proaches by considering the total annotation budget, thus allowing a fairer comparison between methods.
CitationBellver, M. [et al.]. Budget-aware semi-supervised semantic and instance segmentation. A: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. "The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019". 2019, p. 93-102.
Other identifiershttps://arxiv.org/abs/1905.05880
Collections
- Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [188]
- Doctorat en Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [164]
- GPI - Grup de Processament d'Imatge i Vídeo - Ponències/Comunicacions de congressos [314]
- CAP - Grup de Computació d'Altes Prestacions - Ponències/Comunicacions de congressos [756]
- Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.768]
- Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.189]
Files | Description | Size | Format | View |
---|---|---|---|---|
bellver-2019-cvprw-paper.pdf | Publication | 1,614Mb | View/Open | |
bellver-2019-cvprw-poster.pdf | Poster | 4,041Mb | View/Open | |
bellver-2019-cvprw-slides.pdf | Slides | 2,272Mb | View/Open |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder