A learning system for adjustment processes based on human sensory perceptions

View/Open
Cita com:
hdl:2117/184967
Document typeArticle
Defense date2018-12-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Creating, designing and adjusting products are essential decision processes underlying creative industries, such as painting, perfume, food and beverage industries. These processes require the participation and continuous supervision of professionals with highly-developed expert sensory abilities. Training of these experts is very complex due to the difficulty of transmitting intuitive knowledge obtained from perception. A new methodology for capturing this sensory expert knowledge that relies on a machine learning tool, previously trained with 'state-action’ type patterns, jointly with an actions generator module, is proposed in this work. The method is based on a closed loop architecture together with the decomposition of complex sensory knowledge into basic elements capable of being handled by standard machine learning systems. A real case application to color-adjustment in the automotive paint manufacturing industry is presented showing the potential benefits of the method.
CitationRuiz, F. [et al.]. A learning system for adjustment processes based on human sensory perceptions. "Cognitive systems research", 1 Desembre 2018, vol. 52, p. 58-66.
ISSN1389-0417
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S1389041717303005
Files | Description | Size | Format | View |
---|---|---|---|---|
ViewPageProof_COGSYS_641.pdf | 962,8Kb | View/Open |