Show simple item record

dc.contributor.authorIrazábal González, Joaquín
dc.contributor.authorSalazar González, Fernando
dc.contributor.authorSantasusana Isach, Miquel
dc.contributor.authorOñate Ibáñez de Navarra, Eugenio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-04-22T17:00:35Z
dc.date.available2020-04-22T17:00:35Z
dc.date.issued2019-10
dc.identifier.citationIrazábal, J. [et al.]. Effect of the integration scheme on the rotation of non-spherical particles with the discrete element method. "Computational particle mechanics", Octubre 2019, vol. 6, núm. 4, p. 545-559.
dc.identifier.issn2196-4386
dc.identifier.urihttp://hdl.handle.net/2117/184377
dc.description.abstractThe discrete element method (DEM) is an emerging tool for the calculation of the behaviour of bulk materials. One of the key features of this method is the explicit integration of the motion equations. Explicit methods are rapid, at the cost of a limited time step to achieve numerical stability. First- or second-order integration schemes based on a Taylor series are frequently used in this framework and shown to be accurate for the translational and rotational motion of spherical particles. However, they may lead to relevant inaccuracies when non-spherical particles are used since the orientation implies a modification in the second-order inertia tensor in the inertial reference frame. Specific integration schemes for non-spherical particles have been proposed in the literature, such as the fourth-order Runge–Kutta scheme presented by Munjiza et al. and the predictor–corrector scheme developed by Zhao and van Wachem which applies the direct multiplication algorithm for integrating the orientation. In this work, both methods are adapted to be used together with a velocity Verlet scheme for the translational integration. The performance of the resulting schemes, as well as that of the direct integration method, is assessed, both in benchmark tests with analytical solution and in real-scale problems. The results suggest that the fourth-order Runge–Kutta and the Zhao and van Wachem schemes are clearly more accurate than the direct integration method without increasing the computational time.
dc.description.sponsorshipThis work was carried out with the financial support Spanish MINECO within the MONICAB (BIA2015-67263-R) project.
dc.format.extent15 p.
dc.language.isoeng
dc.publisherSpringer
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
dc.subject.lcshGranular materials--Mathematical models
dc.subject.otherDiscrete element method
dc.subject.otherGranular material
dc.subject.otherNon-spherical particles
dc.subject.otherClusters of spheres
dc.subject.otherExplicit rotational integration
dc.titleEffect of the integration scheme on the rotation of non-spherical particles with the discrete element method
dc.typeArticle
dc.subject.lemacMaterials granulars -- Propietats mecàniques -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria
dc.identifier.doi10.1007/s40571-019-00232-5
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40571-019-00232-5
dc.rights.accessOpen Access
local.identifier.drac24006066
dc.description.versionPostprint (author's final draft)
local.citation.authorIrazábal, J.; Salazar, F.; Santasusana, M.; Oñate, E.
local.citation.publicationNameComputational particle mechanics
local.citation.volume6
local.citation.number4
local.citation.startingPage545
local.citation.endingPage559


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder