Show simple item record

dc.contributor.authorGarcía García, José Eduardo
dc.contributor.authorRubio Marcos, Fernando
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2020-04-03T15:08:44Z
dc.date.available2020-04-03T15:08:44Z
dc.date.issued2020-04-01
dc.identifier.citationGarcia, J. E.; Rubio-Marcos, F. Polymorphic phase boundary in piezoelectric oxides. "Journal of applied physics", 1 Abril 2020, vol. 127, núm. 13, p. 131102:1-131102:7.
dc.identifier.issn0021-8979
dc.identifier.urihttp://hdl.handle.net/2117/183124
dc.description.abstractThe design of phase boundaries has now become a consolidated strategy to improve the functional properties of piezoelectric oxides because of the unique properties that may be obtained in their vicinity. In particular, polymorphic phase boundaries (PPBs) have attracted significant interest in recent years because they represent a significant breakthrough in terms of enhanced piezoelectric activity of lead-free piezoelectric oxides. PPBs are temperature-driven phase transitions where both intrinsic and extrinsic contributions maximize, thereby enhancing the macroscopic properties of piezoelectric materials. This tutorial discusses potassium–sodium–niobate-based systems as model materials to reveal some of the most relevant advances in the design of PPBs through compositional modifications. We focus on how PPBs can be modulated by engineered doping and also discuss the direct relation between PPBs and the enhancement of piezoelectric activity. Finally, we briefly describe the main experimental techniques for detecting PPBs.
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshOxides
dc.subject.lcshCeramics
dc.subject.lcshX-rays - Diffraction
dc.subject.lcshPolymorphism (Crystallography)
dc.subject.lcshPerovskite
dc.subject.lcshPhase transformations (Statistical physics)
dc.subject.lcshPolycrystals
dc.subject.otherOxides
dc.subject.otherCeramics
dc.subject.otherPiezoelectric materials
dc.subject.otherX-ray diffraction
dc.subject.otherFerroelectric materials
dc.subject.otherPolymorphism
dc.subject.otherPerovskites
dc.subject.otherPhase transitions
dc.subject.otherPolycrystalline material
dc.titlePolymorphic phase boundary in piezoelectric oxides
dc.typeArticle
dc.subject.lemacÒxids
dc.subject.lemacCeràmica industrial
dc.subject.lemacRaigs X -- Difracció
dc.subject.lemacPolimorfisme (Cristal·lografia)
dc.subject.lemacPerovskita
dc.subject.lemacTransicions de fase (Física estadística)
dc.subject.lemacPolicristal·lins
dc.contributor.groupUniversitat Politècnica de Catalunya. CEMAD - Caracterització Elèctrica de Materials i Dispositius
dc.identifier.doi10.1063/5.0002983
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/5.0002983
dc.rights.accessOpen Access
local.identifier.drac27674594
dc.description.versionPostprint (author's final draft)
local.citation.authorGarcia, J. E.; Rubio-Marcos, F.
local.citation.publicationNameJournal of applied physics
local.citation.volume127
local.citation.number13
local.citation.startingPage131102:1
local.citation.endingPage131102:7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain