Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
76.432 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Programes de Mobilitat Internacional
  • Programes de mobilitat 'incoming' (EEBE)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Programes de Mobilitat Internacional
  • Programes de mobilitat 'incoming' (EEBE)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D-printed calcium phosphate scaffolds for bone regeneration: impact of geometry and treatment an in vivo study

Thumbnail
View/Open
TFE 3D-PRINTED CALCIUM PHOSPHATE SCAFFOLDS.pdf (3,337Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/182353

Show full item record
Lehmann, Cyril Jean Roland Louis
Tutor / directorGinebra Molins, Maria PauMés informacióMés informacióMés informació; Español Pons, MontserratMés informacióMés informacióMés informació
CovenanteeUniversité de Lorraine
Document typeMaster thesis
Date2020-02-18
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The combination of the direct ink writing (DIW) manufacturing technique, also named robocasting, with the use of self-setting calcium phosphate inks based on α-tricalcium phosphate opens new possibilities in the field of bone regeneration: i) On one hand, the DIW fabrication process allows a precise control on the external shape and internal porosity of the scaffold. The porosity allows the colonization of the bone tissue and the shape control opens new perspectives in personalised medicine; ii) On the other hand, the use of self-setting α-TCP inks provide a micro/nano porosity and a high specific surface area (SSA) to the bone graft. Both factors have been identified as crucial for the bioactivity of the material. Since the fabrication time is a crucial factor for the successful translation of these technologies to the clinical field, and the hardening reaction of conventional self-setting inks is slow, recent investigations have developedan alternative setting procedure (hydrothermal) that considerably reduces the hardening step from 7 days to 30 minutes. Regarding the role of scaffold architecture in bone regeneration, it has been recently proved that the presence of concave surfaces enhances osteogenesis. However, since DIW is based on the extrusion of a paste through a needle, conventional DIW scaffolds are composed of extruded filaments with convex surfaces. Hence the interest in developing scaffolds with non-cylindrical strands, which have concave surfaces. The aim of this study was to assess the in-vivo performance of calcium phosphate scaffolds, analysing on one side the effect of the setting treatment, i.e., comparing the biomimetic setting with the hydrothermal setting treatment, and on the other side comparing cylindrical vs.non-cylindrical strands. The characterization of the scaffolds obtained with the two different treatments revealed that whereas the biomimetic treatment resulted in calcium deficient hydroxiapatatite (CDHA), the hydrothermal treatment led to the presence of small amounts of β-tricalcium phosphate. Biomimetic scaffolds consisted of plate-like crystals, with higher SSA and smaller microporosity than the hydrothermal scaffolds, made of needle-like crystals. The geometry of the strands(i.e. cylindrical vs non-cylindrical)did not havean influence on the material composition, microstructure and global porosity, but they did have an impact on the mechanical properties,with lower ultimate compressive strength for the structures with non-cylindrical strands. The scaffolds were implanted in the femoral condyles of 10 adult female New Zeeland rabbits and explanted after 8 weeks. The samples were embedded in resin and characterised by micro-computed tomography, scanning electron microscopy and optical microscopy afterGolden-Mason trichrome staining. All the samples presented the formation of new mature lamellar bone and a successful osteointegration. No statistically significant differences were observed between the samples studied in terms of the amount of newly formed bone, quantified from the SEM observation.Micro-CT allowed the assessment of bone formation in 3D, although difficulties related to image processing prevented the volumetric quantification that might have revealed significant differences. However, a clear tendency was found for new bone formation in constrained microenvironments, such as the contact zone between two strands or the concavities present in the non-cylindrical condition. Further data analysis will have to be carried out to assess the differences in the different sample conditions.
SubjectsThree-dimensional printing, Bone regeneration, Calcium phosphate, Impressió 3D, Ossos -- Regeneració, Fosfat de calci
DegreeMOBILITAT INCOMING
URIhttp://hdl.handle.net/2117/182353
Collections
  • Programes de Mobilitat Internacional - Programes de mobilitat 'incoming' (EEBE) [186]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFE 3D-PRINTED CALCIUM PHOSPHATE SCAFFOLDS.pdf3,337MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina